

Department of Computer Science

Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø

Telephone: (45) 9635 8080

Telefax: (45) 9635 9798

http://www.cs.aau.dk

Title:
Avoiding Race Conditions with Micro
Transactions

Topic:
Programming Technology

Project period:
DAT6, spring 2008
February 2008 - June 2008

Project group:
d621a

Members of the group:
Jesper Bødker Christensen

Supervisor:
Bent Thomsen

Number of copies: 4

Number of pages: 74 (64)

Abstract:

This report proposes a solution to race
conditions that is a variation of locking
and transactional memory. We intro-
duce a small language that uses implicit
statement level locking to make micro
transactions. This yields new seman-
tics for the assignment statement in
the programming language. The locks
are implemented using busy-waiting
and an atomic compare-and-swap in-
struction. A simple flow-sensitive and
field-sensitive points-to analysis is in-
troduced to deduce which locks are
required to perform the transactions
atomically. Some experiments are per-
formed which show that the perfor-
mance of micro transactions is compar-
atively acceptable. However, it is con-
cluded that, due to lack of composi-
tionality, micro transactions are not a
practical solution to race conditions in
modern languages.

Chapter 0

Preface

This report is my master thesis in programming technology. My previous work
includes co-authoring a report on concurrency models where we explored the
differences and similarities between the thread model and the process model. My
master thesis can be viewed as a continuation of this work.

The previous report, ‘Concurrency Models - Processes as an Alternative
to Threads’ [14], was predominantly a theoretical work. This report is based
on a more experimental practical hands-on approach. Much time was spent on
implementing and experimenting with a compiler to try different approaches.
Emphasis has not been on developing formal semantics or an elaborate type
system but, rather, on experimenting with a programming language and the
compiler for this language.

The report is primarily intended for people with theoretical knowledge of
programming languages, language theory and concurrent programming. In order
to fully benefit from this report some theoretical knowledge on these subjects is
required, prior to reading this report.

Jesper Bødker Christensen

iii

Contents

Preface iii

Contents v

1 Introduction 1

1.1 Locking . 2

1.2 Transactional Memory . 2

1.3 Micro Transactions . 3

1.4 Thesis . 4

1.5 Summary . 4

2 The Vex Language 7

2.1 Introduction to Delphi . 9

2.2 Reused Syntax . 9

2.3 Modified Syntax . 10

2.3.1 Assignment Statement . 10

2.3.2 Thread Declarations . 13

2.3.3 If-Then-Else Statement . 13

2.3.4 If-Do-Else-Do Statement . 14

2.4 New Syntax . 15

2.4.1 Free Statement . 15

2.4.2 Spawn Statement . 15

2.5 The Runtime Host Program . 16

2.6 Summary . 16

3 Micro Transactions 17

3.1 Protected Variables . 18

3.2 Locking Protocols . 19

v

CONTENTS

3.2.1 Assignment Statement . 19

3.2.2 If-Do Statement . 21

3.2.3 Acquiring Locks . 21

3.2.4 Releasing Locks . 23

3.2.5 Deadlock Prevention . 23

3.2.6 Livelock Avoidance . 24

3.3 Points-to Analysis . 25

3.3.1 An Example . 25

3.3.2 Algorithm for Assignment Statements . 30

3.3.3 Algorithm for If-Do Statements . 37

3.4 Transaction Semantics . 38

3.4.1 Atomicity . 38

3.4.2 Consistency . 38

3.4.3 Isolation . 39

3.4.4 Durability . 39

3.5 Limitations of the Current Implementation . 39

3.6 Summary . 40

4 The Compiler 41

4.1 Parsing . 43

4.2 Type Checking . 43

4.3 Code Generation . 44

4.3.1 Acquiring and Releasing Locks . 44

4.3.2 Assignment Statements . 45

4.3.3 If-Do Statements . 45

4.4 Summary . 49

5 Experiments 51

5.1 Test Scenarios . 51

5.2 Results . 52

5.3 Summary . 53

6 Conclusions 55

6.1 Thesis . 56

6.2 Future Work . 56

Bibliography 59

vi

CONTENTS

Appendices

A Syntax Definition 61

vii

Chapter 1

Introduction

In a few years the performance of the processors in our computers will no longer
be measured in MHz. We will also have take the number of cores, synchronization
measures and memory architecture into account. Limitations in size and heat will
prevent further increase in clock frequency and promote the use of multiple cores
in processors even more than today.

This means that the free lunch is over [15]. No more will our programs
run faster with each new generation of processors. To utilize the new multicore
processors we will have to change the way we design and write programs.

There have been many attempts to solve this problem in the last five decades
by providing new paradigms, languages and libraries but none have proved to be
‘The next big thing’. Semaphore, monitor, mutex, message passing, functional
languages, process oriented languages, transactional memory... the list goes on.
This report does not promise a solution to all the challenges associated with
multicore processors. But it might serve as a small step towards a solution.

In my previous work, ‘Concurrency Models - Processes as an Alternative to
Threads’ [14], we analyzed the dominant concurrency model today, the thread
model, and another concurrency model, the process model. We assessed the com-
positionality potential of the two concurrency models and used abstract computer
architectures to compare the two models on different hardware, in anticipation
of distributed memory architectures in future processors. We showed that the
two models are equally expressive and that they have similar deficiencies. We
concluded that neither model is adequate and that new abstractions are needed
to provide better concurrency mechanisms in future programming languages.

In this report we are only concerned with shared memory architectures. This
memory architecture is simple to understand and use. And even though there
are signs that suggest that the industry is becoming increasingly interested in
distributed memory architectures we will not consider those in this report. For
the purpose of this report a shared memory architecture gives a simple foundation
to work from.

1

Chapter 1. Introduction

1.1 Locking

Semaphores, monitors and mutexes are very effective ways of ensuring mutual ex-
clusion and preventing race conditions. Unfortunately these mechanisms require
the programmer to enforce correct locking protocols and are therefore prone to
errors.

A typical pitfall is forgetting to lock or unlock at the correct points in the
program. A related problem with this approach is deadlocking caused by incorrect
or conflicting locking protocols. Although this approach is error-prone it is the
de facto way of ensuring mutual exclusion today.

Locking is even more problematic in the object oriented paradigm. The in-
heritance anomaly is a term used to describe the problem that .̇. synchronization
code cannot be effectively inherited without non-trivial class re-definitions” [9].
This problem arises when a subclass is unable to properly honor or follow the
locking protocols of a superclass - possibly resulting in a deadlock.

1.2 Transactional Memory

Transactional memory is a more sophisticated method of avoiding race conditions
and ensuring consistency. This approach performs updates in shared memory by
executing a series of read and writes as a single atomic operation. This gives a
guarantee to the programmer that either all of the updates in the transaction
were successfully executed or that none of the updates were executed. Software
transactional memory is a method that does not require any special hardware
while hardware transactional memory is based on hardware support. Examples
of these are [8] and [11], respectively. Hybrid models that combine the use of
hardware and software also exist.

If the transaction conflicts with other transactions then the transaction is
aborted and the changes are rolled back. The transaction may be subsequently
retried under the assumption that it no longer conflicts with other transactions.
This enforces consistency in the program by always leaving the data in a consis-
tent state.

The intermediate states of a transaction are not visible to other parts of the
program - either all of the updates in the transaction are observable or none at
all. This property of a transaction is called isolation.

Once a transaction has completed the changes made in the transaction are
committed. A transaction which has completed and been committed will not be
rolled back or undone at a later time - this is called durability.

The four properties of transactions described above, Atomicity, Consistency,

2

1.3. Micro Transactions

Isolation and Durability, are abbreviated ACID. The ACID properties, along with
the transaction concept, are analogous to those in database systems. These prop-
erties give a programmer a very powerful programming model where much of the
error handling and synchronization is automatically performed by the compiler
or a runtime system.

Transactions can be implemented using locks but are often implemented by
lock-free mechanisms. Logs are used to keep a record of the changes made during
a transaction to detect conflicts and to roll back a transaction in case of a conflict.
This means that although transactions are optimistic - making changes ‘in-place’
- there is an overhead associated with maintaining logs. Some early experiments
have shown a slowdown of a factor of two as a result of this overhead [3].

A significant challenge in transactional memory is handling operations that
cannot be rolled back. Almost any I/O operation is difficult or impossible to
undo and is therefore problematic inside transactions.

Many of the proposed transactional memory frameworks require that the
programmer identifies where transactions are needed - which statements that
must be within a transaction and which statements that can be safely executed
outside of a transaction.

Transactional memory is a comparatively new mechanism and much research
is still being done on the subject. This means that solutions to the challenges
in transactional memory may be available in the foreseeable future and that
the overhead from logging may be reduced to an insignificant factor - making
transactional memory a viable and feasible mechanism.

1.3 Micro Transactions

The approach described in this report, micro transactions, is a compromise be-
tween traditional locking and transactional memory. Micro transactions are based
on compiler-generated locks and locking. No logs are used and transactions are
never rolled back. Static analysis is used to determine what, when and where to
lock.

A micro transaction consists of a sequence of one or more assignment state-
ments. In addition to assignment statements, a transaction may be enclosed in
an if-then-else like conditional statement. There is at most one branching and
no iteration within a micro transaction. No function calls are allowed within
micro transactions. These restrictions prevent deadlocking and the use of I/O
operations.

Micro transactions guarantee atomicity, consistency and durability. They do
not, however, provide complete isolation. Because only assignments are protected

3

Chapter 1. Introduction

by locks it is possible to observe inconsistent states in a program. This is a design
choice which is discussed further in Chapter 3.

The main design principle behind micro transactions is simplicity. Limiting
transactions to assignments only means that locks are held only for short periods
of time and that a simple static analysis can be used to ascertain locking proto-
cols. All locks are acquired before a transaction is executed - ensuring that the
transaction can run to completion. All locks are released after the transaction
has completed so other transactions may proceed. Deadlocks are prevented be-
cause all locks are acquired before starting a transaction. The locking order is
determined by static analysis to avoid livelocks.

If a lock is already acquired by another transaction then busy waiting is
used to retry. Busy waiting is preferable to a context switch because locks are
presumed to be held only for a very short period of time.

1.4 Thesis

Before writing this master thesis the author and Simon H. Thøgersen wrote the
report ‘Concurrency Models - Processes as an Alternative to Threads’ [14]. This
report looked at the differences and similarities in the thread model and the pro-
cess model. Among the conclusions in this report was the need for better exclusive
access mechanisms. Race conditions was identified as the primary problem with
existing mechanisms. This master thesis explores a way to avoid race conditions
using automatic locking.

The thesis that is subject of this report is:

A compiler can, through static analysis, generate locks and the nec-
essary locking protocols to ensure mutual exclusion in micro transac-
tions. Micro transactions can make concurrent programming easier
and less error-prone. Race conditions can be avoided using micro
transactions. Micro transactions provide a programming model that
is easy to comprehend and use.

1.5 Summary

In this chapter an overview of micro transactions as well as an overview of related
mechanisms was presented. In the following chapters micro transactions will be
explained in greater detail. An experimental language, Vex, that implements
micro transactions will be introduced and the relevant parts of the Vex compiler
will be presented. The results of the experiments performed with Vex will be

4

1.5. Summary

discussed. Finally, micro transactions are compared with related work and the
report ends with a conclusion.

5

Chapter 2

The Vex Language

A simple verbose experimental language, Vex, was constructed to experiment
with micro transactions. Vex is a concurrent language with language constructs
for declaring and spawning threads.

The language is derived from Pascal, but Vex uses some constructs from
Delphi. Delphi is derived from Pascal and is a superset hereof. The syntax and
semantics of some statements are different from those in Pascal and a few new
statements have been added. These differences and additions are explained in
this chapter. Figure 2.1 shows an abstract overview of how the languages are
related.

Figure 2.1: The Vex language is derived from Pascal but Vex also uses some of
Delphi’s language constructs. Additionally, Vex has language constructs which
are not found in Delphi or Pascal.

The Vex compiler translates Vex programs into a Delphi unit. The Delphi
unit is used by a runtime host program. This host program is compiled into an
binary executable using the Delphi 2007 command line compiler. The compiling
process is explained in greater detail in Chapter 4.

A short concurrent Vex program is listed in Figure 2.2 to give the reader an
idea of what a Vex program looks like.

7

Chapter 2. The Vex Language

Program TestProgram;
Var

Account1, Account2 : Integer;

Type
Test = Thread (Count : Integer)
Var

Amount, I : Integer;
Begin

For I := 1 to Count do
Begin

Amount := Random(100) − 50;
Account1 := Account1 + Amount & Account2 := Account2 − Amount;

End;
End;

Var
I : Integer;

Begin
Account1 := 1000 & Account2 := 1000;
For I := 1 to 10 do

Spawn Test(1000000);
Join;
Print(IntToStr(Account1 + Account2));

end.

Figure 2.2: A simple Vex program that starts 10 threads and waits for all
threads to terminate. Each thread transfers an amount from one account to
another 1,000,000 times. The printed result is always 2,000.

8

2.1. Introduction to Delphi

2.1 Introduction to Delphi

Since Vex is related to Delphi a short introduction is in order. Delphi is based on
Pascal but it contains many modern language features such as classes, objects,
exceptions and support for Microsoft Windows GUI components.

The syntax in Delphi is a superset of Pascal with additional syntax for declar-
ing classes, objects, forms and other added features. Delphi also supports the use
of modules which are called units in Delphi. A Delphi program has one program

file which may use any number of unit files.

Unlike C and C++, Delphi does not have a separate header file. A Delphi
source file is divided into several sections, where the interface section corre-
sponds to a .h file and the implementation section corresponds to a .c file.

Delphi does not have garbage collection which means that it is the responsi-
bility of the programmer to allocate and deallocate memory.

2.2 Reused Syntax

Much of the syntax in Vex is identical to the corresponding counterparts in Pascal.
Vex can be considered a modified subset of Pascal. Comments, scope levels, types,
expressions, operator precedence and coercion in Vex is identical to that of Pascal.
However, Vex only has support for a limited number of types, namely: Boolean,
Integer, Char, String and Float.

Variable, procedure and function declarations are identical to those of Pascal.
However, Vex only allows by-value parameters and does not allow by-reference
parameters. Call statements, block statements (begin-end), for, repeat-until and
while statements are identical to those in Pascal. The semantics for these syn-
tactical elements described are identical to the semantics for the corresponding
counterparts in Delphi.

Type declarations are identical to those in Pascal except for the declara-
tion of threads. Threads are not a part of the Delphi language but are used
through classes and libraries. Vex has language constructs for thread support.
The declaration of a thread is elaborated in Section 2.3.2.

The scope rules in Vex follow the standard Pascal and Delphi convention of
using a nested block structure with static binding and typing as defined in [6].
Thread declarations are treated in the same way as procedure declarations with
regards to scope.

The complete syntax definition in Backus-Naur Form (BNF) is available in
Appendix A.

9

Chapter 2. The Vex Language

2.3 Modified Syntax

There are four modifications to the grammar: the assignment statement, the
type declaration of threads, the if-then-else statement and a modified version of
the if-then-else statement. These modifications are described in the following
subsections.

2.3.1 Assignment Statement

The assignment statement is the most important modification. An assignment
can have one of four different structures: A general assignment, a pointer assign-
ment, an exchange assignment or an allocation assignment.

Moreover, several assignments can be joined together in one statement. This
feature is an essential part of micro transactions. The updating operations in a
micro transaction are, in fact, a sequence of joined assignments.

Any assignment statement is atomic with regards to other assignments. Any
variable in an assignment statement which might be referenced from another
scope is called a shared variable. Shared variables are locked during the execution
of the assignment statement s.t. other assignments using that variable must wait
until the assignment has completed.

Assignments using function calls may not contain shared variables. This
means that an assignment can contain either function calls or shared variables.
This is explained in greater detail in chapter 3.

The variations of the assignment syntax are explained in the following sec-
tions.

General Assignment

The general assignment is defined by the syntax:

<Assignment> ::=
<Qualified identifier> ’:=’ <Expression>

This is the typical assignment which allows for statements such as:

A := 123 + Round(77.54);
B := ’Hello’ + ’ ’ + ’World!’;
C := 345.5 - (0.125 + C);
D := not D;

10

2.3. Modified Syntax

The syntax of the general assignment is similar to the assignment statement
in Pascal. Functions may be called in a general assignment - but only when
no shared variables are used in the assignment. This restriction is explained in
Chapter 3.

Pointer Assignment

Pointer variables may be assigned the value of other pointer variables in the
general assignment. When assigning an address of a variable to a pointer the
following syntax is used:

<Assignment> ::=
<Qualified identifier> ’:=’ ’@’ <Qualified identifier>

An example of this follows here:

RecPtr := @Rec;
RecPtr := @Rec.Next;
RecPtr := @Rec.Prev;
RecPtr := @Nil;

The last assignment assigns a special value, Nil, to a pointer variable, RecPtr.
The Nil value carries a special meaning: A pointer variable that points to Nil is
explicitly unassigned - pointing to address 0 in memory. In Pascal and Delphi
the value of pointers are undefined after declaration, until being assigned a value
for the first time. When the value of a pointer is undefined it can point to any
memory address and, as such, it cannot be tested for the Nil value.

In Vex pointers are initialized to Nil after declaration by the compiler. This
makes it possible to test if pointers are unassigned by testing whether the pointer
is equal to Nil or not. Note that this does not remove the risk of dangling pointers!

Exchange Assignment

The third assignment syntax, the exchange, was added to allow a shorthand
notation for a common programming pattern: Swapping the contents of two
variables. This assignment is defined by the following syntax:

<Assignment> ::=
<Qualified identifier> ’<=>’ <Qualified identifier>

This syntax allows for the following statements:

11

Chapter 2. The Vex Language

A <=> B;
B <=> C;
RecPtr1 <=> RecPtr2;
RecPtr^.Next <=> RecPtr1^.Prev;

Note that the ‘^’ symbol is used to dereference a pointer (as in Delphi and
Pascal).

Allocation Assignment

The allocation assignment is used to assign a pointer to a new dynamically allo-
cated record. The new keyword must be followed by a type identifier. A typed
pointer to the newly allocated record is constructed and assigned to the identi-
fier on the left hand side of the assignment. This assignment is defined by the
following syntax:

<Assignment> ::=
<Qualified identifier> ’:=’ ’new’ <Type>

This syntax allows for the following statements:

RecPtr1 := new MyRecord;
RecPtr^.Next := new MyRecord;

This assignment syntax is particularly useful in a sequence of assignments.
An example of this is shown in the following section.

A Sequence of Assignments

The assignment statement is defined as:

<Assign stm> ::=
<Assignment> | <Assignment> ’&’ <Assign stm>

This means that any of the previous four assignment structures can be used
interchangeably in sequence, constituting a single statement. Examples of this
used is shown below:

A := (100 + B) / C &
B := B + 1 &
C <=> D;

Tail^.Next := New Element &
Tail^.Next^.Next := @Nil &
Tail^.Next^.Prev := Tail &
Tail := Tail^.Next;

12

2.3. Modified Syntax

The last statement is an excerpt from a program that uses a doubly-linked list
of integers. The statement inserts a new element in the end of the list and updates
the necessary pointers in one statement. This is useful since the statement is
atomically executed and other statements cannot change the same pointers during
the execution of that statement.

2.3.2 Thread Declarations

Threads are declared as types in Vex. A thread type defines the behavior of a
spawned thread (see Section 2.4.2). The declaration of a thread type resembles the
declaration of a procedure, allowing the thread to be parameterized. A thread has
a declaration section before the body of the thread which allows for thread-local
variables. The body of a thread is declared within a block statement (begin-end).

Here is an example of a thread declaration:

Type
MyThread = Thread (InputValue : Integer)

Var
LocalVar : String;

Begin
LocalVar := ’HelloWorld’;
While InputValue > 0 do
Begin
Print(LocalVar);
InputValue := InputValue - 1;

End;
End;

This declares a new type, MyThread. A MyThread thread can be spawned
after the declaration of MyThread using the spawn statement.

2.3.3 If-Then-Else Statement

The if-then-else statement has been modified to remove ambiguity. By requiring
a begin/end block statement after the if-then part the ambiguity of Pascal’s if-
then-else statement is removed. The modification is necessary because the GOLD
Parser System is used for parsing and it does not allow ambiguous grammar.

The following code is legal Delphi code but illegal in Vex:

If Condition1 Then
If Condition2 Then

DoSomething
Else If Condition3 Then

13

Chapter 2. The Vex Language

DoSomethingDifferent;
Else

DoSomethingElse;

This code is ambiguous because it is not clear which if statements the else
‘statements’ are associated with. Delphi deals with this issue by ruling that any
else statement is associated with the innermost preceding if statement, thereby
disambiguating the syntax.

The following code is the correct Vex if-then-else statement corresponding
to the previous code example:

If Condition1 Then Begin
If Condition2 Then
Begin
DoSomething;

End
Else If Condition3 then
Begin
DoSomethingDifferent;

End
Else
DoSomethingElse;

End;

Note that this is legal syntax in both Pascal, Delphi and Vex.

2.3.4 If-Do-Else-Do Statement

This statement is a high level version of a compare-and-swap operation that
allows for conditional assignments. The statement can be considered a simplified
version of an If-Then-Else statement. The are two syntax definitions for an If-Do
statement. The simplest If-Do statement contains no else part and is defined as:

<Ifdo stm> ::=
’if’ <Expression> ’do’ <Assign stm>

If <Expression> evaluates to true then the <Assign stm> is executed. If
<Expression> evaluates to false then no assignments are executed.

The second syntax definition is:

<Ifdo stm> ::=
’if’ <Expression> ’do’ <Assign stm> ’else’ ’do’ <Assign stm>

14

2.4. New Syntax

If <Expression> evaluates to true then the first <Assign stm> is executed.
If <Expression> evaluates to false then the second <Assign stm> is executed.

The execution of an If-Do statement can be somewhat more complicated
in practice because of the locking involved. In practice, <Expression> may be
evaluated several times before any <Assign stm> is executed. The details of
executing If-Do statements are described in Chapter 3.

2.4 New Syntax

The syntactical additions to Vex which are not present in Pascal are related to
the dynamic deallocation of memory and thread spawning. These additions are
described in the following subsections.

2.4.1 Free Statement

The free statement is used to deallocate dynamically allocated memory. The
free keyword must be followed by a typed pointer that points to a dynamically
allocated record. The syntax for the free statement is defined as:

<Free stm> ::=
’free’ <Qualified identifier>

An example is listed below:

PtrToFree := Tail &
Tail := Tail^.Prev &
Tail^.Next := @Nil;
Free PtrToFree;

The example above removes the last element in a doubly-linked list by up-
dating the necessary pointers before deallocating the element.

2.4.2 Spawn Statement

The spawn statement initializes and starts a new thread. A spawn statement
resembles a procedure call preceded by the spawn keyword. The actual parame-
ters to the spawned thread must correspond with the formal parameters in the
declaration of the thread type. The syntax is defined as:

<Spawn stm> ::=
’spawn’ <Type> |
’spawn’ <Type> ’(’ <Expression List> ’)’

15

Chapter 2. The Vex Language

An example of usage is illustrated in Figure 2.2.

2.5 The Runtime Host Program

A Vex program is compiled to a Delphi unit. This unit is used by a Delphi
program file - the host program. The host program also uses other units with
utility functions and classes. The use of a host program makes it easy to add
functionality such as text output and timing capabilities to a Vex program.

The host program keeps track of threads which makes it easy to both join
and to not terminate before all threads have terminated.

The host program also has functionality for timing the execution of a Vex
program. The CPU timer is used for precision timing.

The output is updated at most every 250 ms. to keep timing interference at
a minimum. The print function is thread safe and uses a lock and busy waiting
to assure mutual exclusion.

2.6 Summary

The syntax of Vex is very close to that of Delphi and Pascal. The modifications
and additions are were made to adhere to the Pascal syntax tradition. The ex-
ception to this is the use of the ‘&’ symbol to construct a sequence of assignments.
The use of a symbol (instead of an English word) is somewhat untraditional in
the Pascal language tradition. An obvious replacement is the word “AND” but
this is already used in expressions and would cause ambiguity. The choice of
using the symbol ‘&’ can be considered a lack of imagination on the part of the
author.

16

Chapter 3

Micro Transactions

A micro transaction is a an atomic assignment statement (consisting of one or
more assignments in sequence) or an atomic If-Do-Else-Do statement (enclos-
ing one or two assignment statements) that contain references to at least one
protected variable. A protected variable is a variable that potentially requires
protection from race conditions. Each protected variable is associated with a
specific lock and each lock is associated with only one variable. The compiler
determines which variables are protected by static analysis (see Section 3.1).

A micro transaction has three steps:

1. Locking phase: Protected variables are locked

2. Execution phase: Execute assignments

3. Unlocking phase: Protected variables are unlocked

The locking protocol uses conservative two phase locking (C2PL) [4]. The
C2PL protocol acquires all locks before commencing a transaction and releases
all locks after a transaction has committed or aborted. If all locks cannot be
acquired in the locking phase then the locks that were acquired are released and
the locking phase restarts immediately in a busy-wait fashion.

The atomicity of micro transactions is provided by locking all protected
variables before executing the assignments in the transaction, ensuring mutual
exclusive access to those variables. This ensures consistency in the programming
model. When all assignments in a micro transaction have been executed all locks
are released and the transaction has committed. A committed transaction cannot
be undone or rolled back at a later time which ensures durability. Isolation in
micro transactions is only guaranteed with respect to other transactions. That
is, an inconsistent view of the system can be observed since only assignments are
protected by locks.

No logs are used to implement micro transactions. Updates are made directly
to variables ‘in-place’. Since an exclusive lock is held for all protected variables

17

Chapter 3. Micro Transactions

during transactions there is no need for keeping logs. The exception to this is
when exceptions or runtime errors occur during transactions. This situation is
not handled by the current implementation (see Section 3.5).

Since a micro transaction only contains assignments the locks are only held
for a short period of time. The time complexity of the execution phase in a
transaction is O(n) where n is the number of assignments in the statement. It
was a design goal to have short locking periods and use busy waiting to avoid
expensive context switching.

Several issues must be addressed to ensure that transactions work properly.
Since micro transactions are based on locks there is an inherent risk of deadlocking
and livelocking. Deadlocks are prevented by removing one of the conditions
necessary for deadlock to occur. Deadlocks and livelocks are described in Section
3.2.5 and Section 3.2.6.

3.1 Protected Variables

It would be easy to assume that all variables are protected and simply lock every
variable when necessary. This, however, would be very inefficient because an
overhead is associated with locking each variable. The challenge is to determine
a minimum set of variables that needs locking. Initially, we shall assume that all
variables are protected.

First, we can exclude any variable that is declared in a scope S and are never
referenced from a child scope of S. Secondly, any variable that is declared within
a scope S and only read in a child scope of S can be excluded. The group of
variables that are declared within a scope S and are written to inside a child
scope of S are included in the set of protected variables. This group of variables
is referred to as shared variables henceforth. To determine whether a variable is
written to in a child scope of the scope in which it was declared only requires a
look-up in the symbol table for every applied occurrence of the symbol. In a more
expressive language where, for example, by-reference parameters were available
this determination would require a more complicated analysis.

The last set of variables are records that are dynamically allocated using
the new keyword. Pointers to these records may be used in other scopes through
parameters or other pointers. Instead of using complicated analysis to determine
which records requires locking and which do not, the principle of simplicity is
applied and all records are included in the set of protected variables. Ideally,
some of the records could be excluded from the set of protected variables but the
overhead of locking some ‘false-positives’ was deemed acceptable.

Pointers may be assigned new values during the execution phase of a micro

18

3.2. Locking Protocols

transaction so a points-to analysis is used to determine the set of locks that must
be acquired in the locking phase. The points-to analysis is described in Section
3.3.

3.2 Locking Protocols

There are two syntactical elements which are used for transactions: the assign-
ment statement and the If-Do-Else-Do statement. The syntax of these statements
is described in Section 2.3. The If-Do-Else-Do statement contains assignment
statements and allows for conditional assignments. When an assignment state-
ment is located within an If-Do-Else-Do statement it is treated slightly different
than when it is not. The following sections explain the locking protocols associ-
ated with these two statements.

3.2.1 Assignment Statement

This section describes the locking protocol of an assignment statement that is not
located inside an If-Do-Else-Do statement. Consider the following assignment
statement:

V1 := E1 & V2 := E2 & . . . & Vn := Em;

A set of protected variables, protected = {P1, P2, . . . , Pk}, is constructed
through the points-to analysis s.t. all the protected variables in {V1, V2, . . . , Vn}
and in expressions E1, E2, ..., Em are in protected.

We introduce a function, Lock, that tries to acquire the locks for a set of
variables. A return value of true signals that all locks were successfully acquired
and a value of false means that no locks were acquired. The lock function is listed
in Algorithm 1.

We introduce a procedure, Unlock, that releases the locks for a set of vari-
ables. The function is defined in Algorithm 2.

The locking protocol for assignment statements is listed in Algorithm 3. The
risk of livelocking is easy to see in Algorithm 3. If any lock cannot be acquired
then Lock returns false and the while loop runs again. This means that there is
a risk that the loop will never terminate. The livelock risk is described in Section
3.2.6.

If no protected variables are referenced in an assignment statement then the
generated code is simply a sequence of Pascal assignment statements.

19

Chapter 3. Micro Transactions

Algorithm 1 The Lock function.

Function Lock({L1, L2, . . . , Lx})
i = 1
while i ≤ x do

Try to acquire lock for variable Li

if lock was acquired then
i = i + 1

else
while i > 1 do

i = i− 1
Release lock for variable Li

end while
Return false

end if
end while
Return true

Algorithm 2 The Unlock function.

Procedure Unlock({L1, L2, . . . , Lx})
i = 1
while i ≤ x do

Release lock for variable Li

i = i + 1
end while

Algorithm 3 Locking protocol for assignment statements.

{Locking phase}
while not Lock(protected) do
{Do nothing}

end while
{Execution phase}
V1 := E1 &

. . .
Vn := Em;

{Unlocking phase}
Unlock(protected)

20

3.2. Locking Protocols

3.2.2 If-Do Statement

This section describes the locking protocol of the If-Do-Else-Do statement. Con-
sider the following statement:

If C1 and C2 and . . . and Cw Do

V1 := E1 & V2 := E2 & . . . & Vs := Es;

Else Do

Vs+1 := Es+1 & Vs+2 := Es+2 & . . . & Vn := En;

Three sets of protected variables are determined through three separate
points-to analyses: protectedexp, protectedA and protectedB. We exclude all the
variables in protectedexp from protectedB and protectedB s.t. these variables are
not locked twice.

protectedexp = {P1, P2, . . . , Pl} s.t. all protected variables in conditions
C1, C2, . . . , Cn are in protectedexp.

protectedA = {Pl+1, Pl+2, . . . , Pl+k} \ protectedexp s.t. all protected variables
in {V1, V2, . . . , Vs} and in expressions E1, E2, ..., Es are in protectedA, while none
of the protected variables in protectedexp are in protectedA.

protectedB = {Pl+k+1, Pl+k+2, . . . , Pl + k + r} \ protectedexp s.t. all the pro-
tected variables in {Vs+1, Vs+2, . . . , Vn} and in expressions Es+1, Es+2, ..., En are in
protectedB while none of the protected variables in protectedexp are in protectedB.

Algorithm 4 describes the locking protocol for the If-Do-Else-Do statement.

If no protected variables are referenced in an If-Do-Else-Do statement or
in the assignment statements herein then the generated code is simply a Pascal
If-Then-Else statement.

3.2.3 Acquiring Locks

Locks are implemented using integers. For each protected variable an additional
integer variable is allocated by the compiler which is used to lock the protected
variable. The lock variable is initialized with a value of 0 to indicate an unlocked
status. A nonzero value indicates a locked status.

When a lock is acquired the value of the lock variable is set to the current
thread id. This indicates not only that the lock has been acquired but also which
thread that has acquired the lock. This is necessary to correctly lock dynamically
allocated records. The static points-to analysis cannot determine if multiple
pointers refer to the same record or not. Instead, a runtime check inspects the
lock variable and determines whether it is already locked by the current thread

21

Chapter 3. Micro Transactions

Algorithm 4 The locking protocol for If-Do-Else-Do statements.

1: {Locking phase}
2: while not Lock(protectedexp) do
3: {Do nothing}
4: end while
5: Abort = False
6: if C1 and C2 and . . . and Cw then
7: {Locking phase - protectedA}
8: Abort = not Lock(protectedA)
9: if Abort then

10: Unlock(protectedexp)
11: Goto 2
12: end if
13: {Execution phase A}
14: V1 := E1 &

15: . . .
16: Vs := Es;

17: Unlock(protectedA)
18: else
19: {Locking phase - protectedB}
20: Abort = not Lock(protectedB)
21: if Abort then
22: Unlock(protectedexp)
23: Goto 2
24: end if
25: {Execution phase B}
26: Vs+1 := Es+1 &

27: . . .
28: Vn := En;

29: Unlock(protectedB)
30: end if
31: Unlock(protectedexp)

22

3.2. Locking Protocols

or by another thread. If the variable is already locked by the current thread then
it is disregarded and the locking phase continues. If the variable is locked by
another thread then all locks are released and the locking phase restarts.

3.2.4 Releasing Locks

The memory address of an acquired lock is pushed onto the stack during the
locking phase. We do this because the assignments in a transaction can change
pointers which means that we might ‘loose’ references to locks as a result. Con-
sider the following transaction:

ptr^.value := 42 &
ptr := b;

After this transaction the reference to the record that ptr pointed to at
the beginning of the transaction is lost. Saving a reference on the stack before
executing the assignments solves this problem. During the unlocking phase the
address of each lock is popped from the stack and a value of 0 is written to the
lock.

3.2.5 Deadlock Prevention

There are four necessary conditions for deadlocks to occur [7]. By removing one of
these conditions the risk of deadlocking is prevented. The conditions for deadlock
are:

1. The ‘mutual’ exclusion condition: Tasks claim exclusive control
of the resources they require.

2. The ‘wait for’ condition: Tasks hold resources already allocated
to them while waiting for additional resources.

3. The ‘no preemption’ condition: Resources cannot be forcibly
removed from the tasks holding them until the resources are
used to completion.

4. The ‘circular wait’ condition: A circular chain of tasks exists,
such that each task holds one or more resources that are being
requested by the next task in the chain.

Deadlocks are prevented in Vex by removing the second condition: All nec-
essary locks are acquired before beginning a transaction. If any of the locks are

23

Chapter 3. Micro Transactions

already acquired by another transaction then all locks are released and the locking
protocol restarts.

A consequence of this is that function calls are prohibited in transactions
and must be made outside of a transaction. This restriction is necessary because
functions may contain transactions that will try to acquire additional locks and
thereby voiding the deadlock prevention.

3.2.6 Livelock Avoidance

A livelock can occur if two or more transactions are repeatedly trying to lock
the same two protected variables in reverse order. The following pseudo code
illustrates this problem:

Thread 1: Thread 2:
Lock A Lock B
Lock B Lock A
(Do assignments) (Do assignments)
Unlock B Unlock A
Unlock A Unlock B

If each thread has acquired one lock at the same time then none of the
threads can acquire their second lock. They will both release their locks and
retry. This conflict can, theoretically, continue indefinitely, constituting a livelock.
In practice, however, this scenario is not likely to continue indefinitely. This
would require that the scheduler schedules and preempts the two threads at same
the time indefinitely on a multi-core processor or that the scheduler preempts
the threads between the first and the second lock indefinitely on a single-core
processor. It should be noted, however, that the risk of livelock increases with the
number of protected variables that are used in both of the conflicting transactions.

The livelock can be prevented if the set of locks is a totally ordered set and
locks are always acquired in order. The dynamically allocated records (with asso-
ciated locks) in Vex makes it impossible to determine a totally ordered set stati-
cally. A dynamic approach where locks are sorted at runtime could be attempted.
But this approach was discarded because it would complicate the locking process
and incur an overhead in the locking process.

Instead of implementing livelock prevention we try to avoid livelocks. This
means that there is a risk of livelocking but that the compiler tries to reduce the
risk statically. This requires no extra checking at runtime and the static analysis
involved is simple.

After type checking the Vex source code the compiler has a list of protected
variables. This list is sorted according to the name of the variables. In many

24

3.3. Points-to Analysis

cases this will prevent livelocking but when pointers are involved in transactions
livelocks can still occur.

3.3 Points-to Analysis

The purpose of the points-to analysis is to acquire the correct locks in the locking
phase, to release the correct locks in the unlocking phase, to determine a minimal
set of locks and to ensure that references to locks are preserved for the unlocking
phase.

The value of pointer fields in records are tracked which means that the analy-
sis is field-sensitive[12]. The analysis is flow-sensitive which means that the order
of the assignments in a micro transaction is taken into account. This gives a
precise result as opposed to a flow-insensitive analysis. A precise flow-sensitive
analysis is possible because micro transactions have a very simple control flow
with no iteration and one branching at most. A precise flow-sensitive analysis of
a Turing-complete language is not possible, per Rice’s Theorem[13], because it
requires decidability of a non-trivial language property.

3.3.1 An Example

This section serves as an introduction to the points-to analysis. The analysis of
an example transaction is explained step-by-step. The following declarations are
assumed for the transaction:

Type
PElement = ^TElement;
TElement = Record
value : Integer;
next : PElement;

End;

Var
p, head, newhead : PElement;
value1, value2 : Integer;

The micro transaction we will be analyzing is the following:

p := head &
value1 := p^.value &
newhead := p^.next &
value2 := newhead^.value &
head := newhead &
p^.next := @nil &
p := p^.next;

25

Chapter 3. Micro Transactions

In this example the pointers (p, head and newhead) are protected variables
and must be locked. All referenced records must also be locked. The points-
to analysis determines which records must be locked in the locking phase and
unlocked in the unlocking phase in order to lock correctly.

It is assumed that the pointers which are used in the assignments - prior to
being assigned new values - are initialized before the transaction is started. In
this example head and head^.next are assumed initialized. These assumptions
are part of the points-to analysis, as the example will show.

To analyze the transaction we construct a labeled directed multigraph. The
graph is initialized s.t. it contains one vertice, nil, and no edges, as illustrated
in Figure 3.1. The set lockset = ∅ is constructed. lockset is used to identify
variables and records that needs to be locked.

Figure 3.1: The points-to graph after initialization.

Assignments consist of a left-hand-side and a right-hand-side, separated by
the assignment symbol: ‘:=’. When analyzing assignments the right-hand-side is
analyzed before the left-hand-side.

The first assignment, ‘p := head’, is analyzed. The right-hand-side has a
single identifier, head, which is a pointer so we construct a new vertex, head.
We assume that the pointer is initialized and points to a valid record so we
construct a vertex, record1, and a directed edge from head to record1, labeled
head. Next we process the left-hand-side by creating a vertex, p, and an directed
edge from p to the vertex that head has a edge to, record1. We label this edge
p. Both p and head are protected variables so we include p and head in lockset
s.t. lockset = ∅∪{p, head} = {p, head}. Now the assignment has been processed
and the resulting graph is illustrated in Figure 3.2.

Figure 3.2: The points-to graph after the first assignment.

In the second assignment, ‘value1 := p^.value’, the qualified identifier
on the right-hand-side is processed. p exists and has an edge to record1 and
p^.value is not a pointer so we do not add any new vertices or edges. But since
p is dereferenced it needs to be locked so it is marked with the lock function s.t.
lock(record1) = true. The left-hand-side is processed and because value1 is not
pointer no further changes are made to the graph. After processing the second
assignment the graph is unchanged.

26

3.3. Points-to Analysis

The right-hand-side of the third assignment, ‘newhead := p^.next’, is the
pointer, p^.next. The p vertex exists and it has an edge to record1 but no
next edge from record1 exists so we create a new vertex, record2 and a directed
edge from record1 to record2, labeled next. This is under the assumption, again,
that p^.next is an initialized pointer to an existing record. The left-hand-side
contains the pointer newhead so we create a vertex newhead and a directed edge
from newhead to record2, labeled newhead. newhead is a protected variable so we
include it in lockset s.t. lockset = {p, head}∪{newhead} = {p, head, newhead}.
The graph now looks shown in Figure 3.3.

Figure 3.3: The points-to graph after the third assignment.

The fourth assignment, ‘value2 := newhead^.value’, is analyzed in the
same manor as the second assignment and leaves the graph unchanged. Since
newhead is dereferenced the corresponding vertex, record2, needs locking and it
is marked with the lock function s.t. lock(record2) = true.

The pointers used in the fifth statement, ‘head := newhead’, cause no new
vertices. However, because an edge labeled head already exists from head to
another vertex we create a new edge labeled head′. This edge is oriented from
head to record2 because the newhead edge ends at record2. The resulting graph
is illustrated in 3.4

Figure 3.4: The points-to graph after the fifth assignment.

27

Chapter 3. Micro Transactions

In the sixth assignment, ‘p^.next := @nil’, the right-hand-side causes no
new vertices. A vertex p corresponding to the pointer p on the left-hand-side
already exists and the edge labeled p ends in record1. A next edge from record1

already exists so a new edge, labeled next′, is constructed from record1 to nil.
The graphs now looks as illustrated in Figure 3.5.

Figure 3.5: The points-to graph after the sixth assignment.

In the seventh and last assignment, ‘p := p^.next’, the right-hand-side
causes no new vertices. The edge labeled p points to record1 which has a edge
labeled next′ to nil. The vertex p corresponding to the left-hand-side already
exists, as does the edge labeled p so a new edge, labeled p′, is constructed from p
to nil. This completes the graph which now looks as illustrated in Figure 3.6.

Figure 3.6: The points-to graph after the seventh and last assignment.

By observing the graph we can easily see that only two records are referenced
in the transaction, record1 and record2. Both records need to be locked since
lock(record1) = lock(record2) = true. We cannot use the pointers that set the
lock value to true, p^ and newhead^, to lock the records because these pointers
do not point to the records before the transaction.

We need to use the graph to determine which pointers to use for locking
the records. Also, we need another function, owner, to determine the pointers.
The owner function is defined s.t. owner(V) = W where W is the vertex from

28

3.3. Points-to Analysis

Figure 3.7: The points-to graph after removing edges s.t. the graph reflects the
values of pointers after the transaction. ‘Removed’ edges are drawn in gray and
the remaining edges in black.

which the first edge to V originated. owner(V) = nil for any vertice V to which
there are no edges. For the example this means that owner(record1) = head,
owner(record2) = record1 and for any other vertice V , owner(V) = nil. Now we
can easily find the correct pointers to record1 and record2 by using the owner
function and the edges in the graph.

For record1 we use owner(record1) = head and find the edge from head to
record1, labeled head. Since owner(head) = nil we are done. The pointer is
simply head̂ (the dereference symbol is added to differentiate from the variable
head). We add head̂ to lockset s.t. lockset = {p, head, newhead} ∪ {head̂ } =
{p, head, newhead, head̂ }.

For record2 we use owner(record2) = record1 and find the edge from record1

to record2, labeled next. Next we use owner(record1) = head to find the edge
from head to record1, labeled head. And since owner(head) = nil we are
done. So the pointer to record2 is head̂ .next̂ and we include this in lockset
s.t. lockset = {p, head, newhead, head̂ } ∪ {head̂ .next̂ } = {p, head, newhead,
head̂ , head̂ .next̂ }.

By removing any edge e where a corresponding edge e′ exists we can see, as
illustrated in Figure 3.7, that after the transaction completes we no longer have
a reference to record1. This is why we push the address of the pointers on the
stack during the locking phase.

To acquire locks to the correct variables and records we use lockset and push
the addresses of the locks onto the stack. To release the locks we pop the addresses
from the stack. If we simply used lockset to release the locks - without using the
stack - we would quickly run into problems since head^.next^ is undefined after
the transaction.

This concludes the example. Before continuing to the actual algorithm it
should be noted that we used edges with labels such as head and head′ for sim-

29

Chapter 3. Micro Transactions

plicity in this example. The actual algorithm uses one set of edges for the initial
value of pointers, edges, and another set of edges for the value of pointers after
the transaction, edges′. So in the actual algorithm, two edges which are both
labeled head would exist; One in edges and one in edges′.

3.3.2 Algorithm for Assignment Statements

Qualified identifiers, denoted by a Q, are used extensively throughout the analysis.
Qualified identifiers are a sequence of one or more identifiers, denoted by I. The
syntax of Qualified identifiers is defined as:

<Qualified identifier> ::=
Identifier |
Identifier ’^’ |
Identifier ’.’ <Qualified identifier> |
Identifier ’^’ ’.’ <Qualified identifier>

The analysis constructs a directed labeled multigraph. The vertices of the
graph is the set V = vertices and the edges of the graph is the set E = edges ∪
edges′. V initially contains one vertex, nil, which represents the nil value (an
explicitly unassigned pointer). E is empty after initialization. The edges in edges
represent the initial value of pointers to referenced records. The edges in edges′

represent the value of pointers to referenced records after the transaction has
completed.

The set I represents the set of identifiers in a program and the set Q repre-
sents the set of qualified identifiers that can be constructed from I.

A number of functions are used to hold information about vertices, edges
and identifiers. These functions are described below:

lock : V→ {true, false} The lock function returns true if a record or variable
that a vertex V ∈ V represents must be locked before a transaction is
started. If V does not need to be locked then lock(V) = false.

protected : I→ {true, false} The protected function returns true if an iden-
tifier I ∈ I is a protected variable. If I is not a protected variable then
protected(I) = false.

label : E→ string The label function returns the label of an edge E ∈ E. The
return value of label is a text string.

name : V→ string The name function returns a string with the name of a
vertex V ∈ V. If the function is undefined for a vertex V then name
returns the empty string, s.t. name(V) = ‘’. The name function is defined

30

3.3. Points-to Analysis

for vertices that represent variables. It is used to ensure that duplicate
vertices are not constructed.

identifiername : I→ string The identifiername function returns a string
with the name of an identifier I ∈ I.

dereferenced : I→ {true, false} The dereferenced function returns true if
an applied occurrence of a pointer identifier I ∈ I is dereferenced, i.e.
dereferenced(ptr^) = true and dereferenced(ptr) = false.

new : V→ {true, false} The new function returns true if the record associated
a vertex V ∈ V is allocated within the transaction. Any record allocated
within the transaction does not need locking because no other transaction
can have a reference to it.

owner : V→ V The owner function is used to construct a linked list of ver-
tices which represent a qualified identifier and the records that are refer-
enced through the qualified identifier. V is the first identifier in a qualified
identifier when owner(V) = nil. For the special nil vertex, the function is
defined as owner(nil) = nil.

lastidentifier : Q→ I The lastidentifier function returns the last identifier
of a qualified identifer. The function returns In for a qualified identifier Q,
where Q = (I1.I2. · · · .In).

The main algorithm for the points-to analysis of an assignment statement,
AnalyzeAssignment, is listed in Algorithm 5. The edges and vertices of the graphs
are initialized before the statements of the transaction are analyzed. Each type of
assignment statement is processed by a separate function. After the statements
have been analyzed, a list of qualified identifiers, locksetA, is constructed. This set
is used by the code generator to generate assembly code for the locking protocol
of micro transaction A.

Two helper functions are used in the analysis of the statements. The fist
helper function, AddRecord, is listed in Algorithm 6. This function adds a new
vertex, W , that represents a record to the graph. The first parameter, V , iden-
tifies the vertex from which the record is first referenced. This vertex is saved as
the owner of the new vertex. The second parameter, LabelName, is the name of
the identifier that references W . If an edge labeled LabelName from the owner
vertex, V , already exists in edges′ then this edge is removed. A new edge, E, is
constructed from V to W with the label LabelName. This edge is included in
edges to indicate that this is the initial reference to the record. The edge is also
included in edges′ to indicate that after the transaction the record is also refer-
enced by V . The edge is removed from edges′ later if a statement subsequently

31

Chapter 3. Micro Transactions

Algorithm 5 The AnalyzeAssignment function.

Function AnalyzeAssignment (A = (S1&S2& . . . &Sn))
edges = ∅
edges′ = ∅
vertices = {nil}
for i = 1 to n do

if Si is an allocation assignment then
Call AllocationAssignment(Si)

end if
if Si is an exchange assignment then

Call ExchangeAssignment(Si)
end if
if Si is a pointer assignment then

Call PointerAssignment(Si)
end if
if Si is a general assignment then

Call GeneralAssignment(Si)
end if

end for
locksetA = MakeLockSet
return locksetA

Algorithm 6 The AddRecord helper function.

Function AddRecord (V , LabelName)
if E ′ = (V, W ′) exists where E ′ ∈ edges′ ∧ label(E ′) = LabelName then

edges′ ⇐ edges′ \ {E ′}
end if
vertices⇐ vertices ∪ {W}
owner(W) = V
E = (V, W)
label(E) = LabelName
edges⇐ edges ∪ {E}
edges′ ⇐ edges′ ∪ {E}
new(W) = false
return W

32

3.3. Points-to Analysis

assigns a new value to the identifier represented by V and LabelName. Finally,
the new vertex is returned to the caller.

The second helper function, AddQualifiedIdentifier, is listed in Algorithm
7. The function adds vertices and edges to the graph to represent the qualifier
identifier Q (the parameter). The first identifier in Q is a variable in the program
and a vertex is constructed to represent this (if one does not already exist). The
identifiers in Q are traversed adding vertices and edges for identifiers that are not
already represented in the graph. If the last identifier is not a pointer then no
edge or vertex is constructed for this identifier. If the first identifier is a protected
variable then lock of the associated vertex defined as true. For any other identifier
lock is always defined as true for the record wherein the identifier is a field. If
the last identifier is a dereferenced pointer then lock of the ‘referenced’ vertex
is defined as true. The vertex associated with the variable (n = 1) or the last
referenced record (n > 1) is returned.

The AllocationAssignment function is listed in Algorithm 8. This function
calls AddQualifiedIdentifier to ensure that the vertices and edges needed to repre-
sent the qualified identifier on the left-hand-side of the assignment, Q, are present
in the graph. Then, a call to AddRecord adds a new vertex, W , to the graph to
represent a newly allocated record. Finally, the value of the new(W) is defined
to true to indicate that the record was allocated within the transaction.

The ExchangeAssignment function, listed in Algorithm 9, calls AddQuali-
fiedIdentifier to construct the vertices and edges for the qualified identifiers Q1

and Q2. The current edges from Q1 and Q2 in edges′ are found and used to
construct new edges. Finally, the current edges in edges′ are replaced by the new
edges.

The PointerAssignment function, listed in Algorithm 10, calls AddQuali-
fiedIdentifier to construct the vertices and edges for the qualified identifier Q1 on
the left-hand-side of the assignment. The current edge from Q1 in edges′ is found
and removed from edges′. If the qualified identifier on the right-hand-side is ‘nil’
then a new edge, E ′ is constructed from the vertex associated with the last identi-
fier in Q1, V1, to the vertex nil. If the qualified identifier on the right-hand-side is
not ‘nil’ then we call AddQualifiedIdentifier to construct the vertices and edges
for Q2. We construct a new edge, E ′, from V1 to W2 where W2 represents the
record that Q2 points to. Finally, the E ′ edge is included in edges′.

The GeneralAssignment function, listed in Algorithm 11, does one of two
things: If the last identifier in the qualified identifier on the left-hand-side of the
assignment, Q1, is a pointer then the expression, Exp, on the right-hand-side
contains exactly one qualified identifier, Q2. In this case, the AddQualifiedIdenti-
fier function is invoked twice to create vertices and edges for Q1 and Q2. A new
edge, E1

′, is constructed from the vertex that represents the last identifier in Q1,
V1, to the vertex that represents the record referenced by Q2, W2. E1

′ is included

33

Chapter 3. Micro Transactions

Algorithm 7 The AddQualifiedIdentifier helper function.

Function AddQualifiedIdentifier (Q = (I1.I2. · · · .In))
if W exists where W ∈ vertices ∧ name(W) = identifiername(I1) then

V = W
else

name(V) = identifiername(I1)
lock(V) = protected(I1)
owner(V) = nil
vertices⇐ vertices ∪ {V }

end if
for k := 1 to n do

if E = (V, W ′) exists where E ∈ edges′ ∧ label(E) = identifiername(Ik)
then

W ⇐ W ′

else if k < n ∨ In is a pointer then
W ⇐ AddRecord(V ,identifiername(Ik))

end if
if k > 1 then

lock(V) = true
end if
if k < n then

V ⇐ W
else if In is a pointer ∧ dereferenced(In) then

lock(W) = true
end if

end for
return V

Algorithm 8 The AllocationAssignment function.

Function AllocationAssignment (S = (Q := new T))
V = AddQualifiedIdentifier(Q)
W = AddRecord(V , identifiername(lastidentifier(Q)))
new(W) = true
return

34

3.3. Points-to Analysis

Algorithm 9 The ExchangeAssignment function.

Function ExchangeAssignment (S = (Q1 <=> Q2))
V1 = AddQualifiedIdentifier(Q1)
V2 = AddQualifiedIdentifier(Q2)
I1 = lastidentifier(Q1)
I2 = lastidentifier(Q2)
E1 = (V1, W1) where E1 ∈ edges′ ∧ label(E1) = identifiername(I1)
E2 = (V2, W2) where E2 ∈ edges′ ∧ label(E2) = identifiername(I2)
E1

′ = (V1, W2)
E2

′ = (V2, W1)
label(E1

′) = label(E1)
label(E2

′) = label(E2)
edges′ ⇐ edges′ \ {E1, E2}
edges′ ⇐ edges′ ∪ {E1

′, E2
′}

return

Algorithm 10 The PointerAssignment function.

Function PointerAssignment (S = (Q1 := @ Q2))
V1 = AddQualifiedIdentifier(Q1)
I1 = lastidentifier(Q1)
E = (V1, W1) where E ∈ edges′ ∧ label(E) = identifiername(I1)
edges′ ⇐ edges′ \ {E}
if Q2 = ‘nil’ then

E ′ = (V1, nil)
else

V2 = AddQualifiedIdentifier(Q2)
I2 = lastidentifier(Q2)
E ′′ = (V2, W2) where E ′′ ∈ edges′ ∧ label(E ′′) = identifiername(I2)
E ′ = (V1, W2)

end if
edges′ = edges′ ∪ {E ′}
label(E ′) = label(E)
return

35

Chapter 3. Micro Transactions

Algorithm 11 The GeneralAssignment function.

Function GeneralAssignment (S = (Q1 := Exp))
V1 = AddQualifiedIdentifier(Q1)
if lastidentifier(Q1) is a pointer then
{Exp contains exactly one qualified identifier (Q2) and nothing else}
Q2 ⇐ The qualified identifier in Exp
V2 = AddQualifiedIdentifier(Q2)
I1 = lastidentifier(Q1)
I2 = lastidentifier(Q2)
E1 = (V1, W1) where E1 ∈ edges′ ∧ label(E1) = identifiername(I1)
E2 = (V2, W2) where E2 ∈ edges′ ∧ label(E2) = identifiername(I2)
E1

′ = (V1, W2)
label(E1

′) = label(E1)
edges′ ⇐ edges′ \ {E1}
edges′ ⇐ edges′ ∪ {E1

′}
else

for every qualified identifier Q2 in Exp do
V2 = AddQualifiedIdentifier(Q2)

end for
end if
return

in edges′ after the old edge, E1, has been removed from edges′.

The other case - when the last identifier in Q1 is not a pointer - is the
assignment of simple types and statically allocated records. In this case Exp
may contain any number of qualified identifiers. We start by calling AddQuali-
fiedIdentifier to create vertices and edges for Q1, the qualified identifier on the
left-hand-side. Then we invoke AddQualifiedIdentifier for each Q2 in Exp. No
more edges need to be created or modified because no references can be changed
in this case.

The last function in the points-to analysis, MakeLockSet, is listed in Algo-
rithm 12. This function is called after all statements in a micro transaction have
been analyzed. The function traverses all vertices and adds string representations
of the qualified identifiers that must be locked to the set lockset. Any vertex,
V ∈ vertices, where owner(V) = nil and lock(V) = true is a protected variable
and is added to lockset. A vertex V where owner(V) 6= nil and lock(V) = true is
a record. If new(V) = true then V represents a record that was allocated within
the transaction and therefore does not need to be locked. If new(V) 6= true then
we use the owner function to make a string representation of the first qualified
identifier that referenced the record and include this string in lockset. Finally,
lockset is returned as the result.

36

3.3. Points-to Analysis

Algorithm 12 The MakeLockSet algorithm of the points-to analysis.
Function MakeLockSet
lockset = ∅
for every V ∈ vertices do

if V 6= nil ∧ V 6= undefined ∧ lock(V) = true then
if owner(V) = nil then

lockset⇐ lockset ∪ {name(V)}
else if new(V) = false then

N = ‘’
while owner(V) 6= nil do

E = (W1, W2) where E ∈ edges ∧W2 = V ∧W1 = owner(V)
N = label(E)+ ‘.’ +N
V ⇐ owner(V)

end while
lockset⇐ lockset ∪ {N}

end if
end if

end for
return lockset

When the points-to analysis of the assignment statement has completed
locksetA contains a list of all the qualified identifiers that must be locked be-
fore executing the assignments in the micro transaction.

3.3.3 Algorithm for If-Do Statements

The AnalyzeIfDo function, listed in Algorithm 13, performs the points-to analysis
of If-Do statements. The vertices and edges for every qualified identifier, Q, in the
conditional expression, Exp, are constructed by calling AddQualifiedIdentifier for
every Q. Then MakeLockList is invoked to generate the locks for Exp, locksetExp.
The locks required for assignment statement A, locksetA, are determined by
calling AnalyzeAssignment and excluding the locks already in locksetExp. The
locks for assignment statement B, locksetB, are also determined by invoking
AnalyzeAssignment. The three sets of locks are returned and the analysis is
complete.

The algorithm for If-Do statements without the Else-Do part is similar to
Algorithm 13 and is omitted for brevity.

37

Chapter 3. Micro Transactions

Algorithm 13 The AnalyzeIfDo function.

Function AnalyzeIfDo (F = (If Exp DO A Else DO B))
edges = ∅
edges′ = ∅
vertices = {nil, undefined}
locksetExp = ∅
for every qualified identifier Q in Exp do

AddQualifiedIdentifier(Q)
end for
locksetExp = MakeLockSet
locksetA = AnalyzeAssignment(A) \locksetExp

locksetB = AnalyzeAssignment(B) \locksetExp

return (locksetExp, locksetA, locksetB)

3.4 Transaction Semantics

The semantics for micro transactions can be described informally as: Whenever a
thread enters a micro transaction execution continues as if all other threads were
suspended during the transaction. After the transaction has completed execution
continues as if all threads are resumed. A program is executed as if no more than
one transaction is executed at any given time. While this is the semantics of micro
transactions, many micro transactions that do not interfere with each other may
be executed at the same time in practice.

One cannot talk about transactions without discussing the ACID properties.
The ACID properties are associated with certain guarantees that apply to trans-
actions. The guarantees that apply to micro transactions are described in the
following sections.

3.4.1 Atomicity

The guarantee of atomicity in micro transactions is that either all assignments
in a micro transaction are executed or none are executed. Since the protected
variables in the transaction are locked during the transaction, no other updates
can be performed on the variables. This means that the transaction logically
appears as a single atomic operation.

3.4.2 Consistency

The guarantee of consistency means that once a transaction has locked all of
the necessary locks the transaction can execute uninterrupted. This means that

38

3.5. Limitations of the Current Implementation

the programmer has a convenient programming model where a series of updates
can be performed without regard to race conditions. This ensures that all of the
assignments in a transaction are performed in the order specified, effectively guar-
anteeing consistency. Naturally, the compiler cannot guarantee that the updates
specified by the programmer are correct and results in a consistent data model
from the programmer’s point of view. What is guaranteed is that the updates
specified are performed correctly.

3.4.3 Isolation

The guarantee of isolation means that during a micro transaction there is a consis-
tent view of the system within the transaction. The guarantee of isolation applies
only within transactions which means that any expression using protected vari-
ables outside of a transaction may see an inconsistent view of the system at some
point in the execution. Protected variables are only locked when written to and
not when read from. This is a design decision which was made to reduce the
overhead of locking.

3.4.4 Durability

The guarantee of durability means that after a transaction has completed all of
the updates are committed and will not be undone or revoked at a later point in
execution.

3.5 Limitations of the Current Implementation

Vex does not have exception handling or runtime error handling. If a runtime
error or an exception occurs during a transaction then part of the transaction
might be committed while another part is not. Furthermore none of the locks
acquired are released which will most likely cause the program to deadlock or
livelock. This guarantee of atomicity only holds when no exceptions or runtime
errors occur.

By-reference parameters cannot be used. This is a minor limitation which can
be remedied with a little extra work. For every by-reference parameter the com-
piler could add an extra parameter to pass a lock variable when a protected vari-
able is passed by-reference. This would allow functions, procedures and threads
to lock protected variables correctly when used as by-reference parameters.

Functions, nested ‘if’ statements and iteration cannot be used within trans-
actions. This imposes some restrictions on the expressiveness of the programmer,

39

Chapter 3. Micro Transactions

as some algorithms are not easily written with these restrictions.

There is a risk of livelock in Vex programs because the set of locks in a
program is a not totally ordered set. The risk is reduced by sorting some of
the locks. The risk can be further reduced by employing a truncated binary
exponential backoff scheme like the CSMA/CD scheme used in the IEEE 802.3
ethernet protocol [2].

There is no transaction manager in Vex which means that when multiple
threads are trying to acquire the same lock there is no guarantee that a given
thread will acquire the lock within a given deadline (or within a given number of
retries). This means that there is a risk of starvation.

You cannot write If-Do-Else-If-Do statements. Removing this limitation
is not complicated and the only reasons for not doing so is the time frame for
this thesis and because it was not an essential feature.

If-Do statements cannot be nested. This limits the expressiveness of the
programmer - but not the language. The lack of nested If-Do statements makes
it more challenging, but not impossible, to write some algorithms.

3.6 Summary

This chapter has described the details about micro transactions. Protected vari-
ables were defined and a method of how to identify them was presented. A
points-to analysis which identifies the protected variables that need to be locked
in a given transaction was presented. Deadlock-free locking protocols for micro
transactions were presented. And finally, some of the limitations of the imple-
mentation were discussed.

40

Chapter 4

The Compiler

A two stage compiling process is used to compile a Vex program. Stage one
translates a Vex program into a Delphi unit. The Delphi unit is used in a Delphi
host program which is compiled into a binary executable by the Delphi 2007
compiler. The executable as well as the two compilers run on an Intel compatible
processor with Windows XP. An overview of the compiling process is illustrated
in Figure 4.1

Figure 4.1: The two stage compiling process used to compile a Vex program.

A flow diagram of the two stage compiling process used to compile a Vex
program is illustrated in Figure 4.2. Stage one translates a Vex program into a
Delphi unit. First the GOLD parser is used to construct an abstract syntax tree
(AST). The AST is used for type checking where the AST is decorated, adding
type information to nodes in the AST. The decorated AST is used to generate
Delphi code and a .Pas file is the output of stage 1. In stage two the .Pas file
is compiled as a unit in a Delphi project (the .Dpr file). This Delphi project
is the host program which is compiled into a binary executable by the Delphi
2007 compiler. The GOLD parser may report syntax errors if the program is
not correct. The type checking process may also report errors if the program is
not correct. The Delphi compiler may report an error if the .exe file cannot be
overwritten.

41

Chapter 4. The Compiler

Figure 4.2: Flow diagram of the two stage compiling process.

42

4.1. Parsing

An important Delphi feature is the ability to use inline assembler. This allows
the Vex compiler to insert assembler instructions and use the atomic compare-
and-swap instruction CMPXCHG[5]. When the CMPXCHG instruction is preceded by
the LOCK directive the instruction is atomic across all cores in the CPU.

The target platform for the Delphi compiler is Windows XP on an Intel
Architecture 32 bit (IA32) processor. IA32 processors are also popularly known
as x86 processors.

4.1 Parsing

The GOLD Parsing System [1] is used for parsing in the Vex compiler. The Vex
grammar was written in the ‘GOLD Parser Builder’ application. This application
generates a compiled grammar table (CGT) file from a grammar file (GRM). This
file contains LALR(1)1 and DFA2 parsing tables for parsing a Vex program. The
CGT file needs only to be generated when the grammar is changed.

The Vex compiler uses the ‘GOLD Parser Engine’ for Delphi by Alexandre
Rai. The parser engine uses the CGT file to scan and parse a Vex program. The
engine uses a DFA to scan the Vex program and generate tokens. The tokens
are used by a LALR(1) parser to generate an AST for the Vex program. The
dataflow for the GOLD Parsing System is illustrated in Figure 4.3.

Figure 4.3: The dataflow in the GOLD parsing System.

4.2 Type Checking

The AST is traversed and type checked in a recursive descent. The AST is
decorated with type information. Coercion is performed and the coerced nodes

1Look-Ahead, Left-to-right, Rightmost-derivation parser with a look-ahead of 1 token
2Deterministic Finite Automaton

43

Chapter 4. The Compiler

in the AST are annotated with the appropriate type information. Protected
variables are identified and marked as such in the symbol table.

Assignment nodes in the AST are decorated with a list of the identifiers on
the right-hand-side of the assignment and with the identifier on the left-hand-side
of the assignment. If-Do-Else-Do nodes are decorated with a list of the identifiers
used in the conditional expression.

The list of identifiers used in an assignment node is searched for protected
variables. If the list contains any protected variables and the assignment node
references any functions then an error is reported and compilation is terminated.

Finally, a points-to analysis is performed in each of the If-Do-Else-Do and
assignment nodes in the AST.

4.3 Code Generation

Since Vex is very similar to Delphi most of the code generation is straightforward.
The most interesting aspect of the code generation is the inline assembler that
acquires and releases the locks of protected variables.

4.3.1 Acquiring and Releasing Locks

Delphi allows writing assembler blocks within statement blocks. This feature
makes is easy to use the CMPXCHG instruction in Delphi. Delphi symbols can
be used within the assembler blocks which simplifies the task even more.

The CMPXCHG3 assembler instruction is used to acquire a lock. It is a
Compare-And-Swap (CAS) instruction in the Intel Architecture 32 processors.
The details about the instruction can be found in ‘Intel 64 and IA-32 Architectures
Software Developers Manual - Volume 2A: Instruction Set Reference, A-M’[5].
After acquiring a lock the memory address of the lock is saved on the stack.

Since the memory address of the lock variable is stored on the stack, releasing
a lock a simple matter of reading the address from the stack and writing a value
of 0 to the memory address.

Jump instructions use labels as jump targets. A label is an alphanumeric
symbol followed by a colon. A local label is prefixed with ‘@@’ and is only
reachable by jump instructions inside the same assembler block. Global labels
must be declared prior to use in Delphi.

3CMPXCHG is a mnemonic for CoMPare-and-eXCHanGe

44

4.3. Code Generation

Algorithm 14 The Foo procedure. The declaration of a and b has been included
for completeness.

Var
a, b : Integer;

Procedure Foo;
Begin

a := a + 100 &
b := b -100;

End;

4.3.2 Assignment Statements

A simple Vex procedure Foo is shown in Algorithm 14. The code generated
for this procedure is shown in Algorithm 15. Some assembler instructions have
been compacted s.t. two instructions appear on the same line, separated by a
semicolon, to conserve space4.

In Algorithm 15 the two lock variables, a_LOCK and b_LOCK, have been added
by the compiler. The micro transaction has been enclosed in a begin-end block.
GetCurrentThreadID is called and the result is stored in the edx register. We
try to acquire the first lock, a_LOCK, in lines 10 and 11. If successful then we
jump to @@lock_2, if not then we jump to @@start and retry. After @@lock_2

the address of the first lock is pushed onto the stack and we try to acquire the
second lock, b_LOCK. If successful then we jump to @@end and push the address
of the second lock onto the stack. If the second lock cannot be acquired then we
jump to @@unlock_1 where the first lock is released and we jump to @@start to
retry.

When both locks have been acquired the execution phase of the transaction
can start and lines 28 and 29 are executed. Finally, the two locks are released.
Note that when an address is pushed onto the stack an additional value is pushed.
The second value is used to signal whether the lock was already acquired by
the current thread. If so, it will only be unlocked once during the unlocking
phase. This is relevant when locking multiple records through pointers because
the points-to analysis cannot always identify whether these records are in fact
the same record.

4.3.3 If-Do Statements

A simple Vex procedure Bar is shown in Algorithm 16. The code generated
for this procedure is shown in Algorithm 17. The assembler instructions which

4This is legal Delphi syntax

45

Chapter 4. The Compiler

Algorithm 15 The code generated for the Foo procedure. Two assembler blocks
have been inserted and two locks variables have been declared.

1: Var
2: a, b : Integer;
3: a LOCK, b LOCK : Integer;
4: Procedure Foo();
5: Begin
6: Begin {Transaction}
7: Asm {Locking phase}
8: CALL GetCurrentThreadID; MOV edx, eax
9: @@start:

10: LEA ecx, a LOCK; MOV eax, 0
11: LOCK CMPXCHG [ecx], edx; JZ @@lock 2
12: CMP eax, edx; JNZ @@start
13: @@lock 2:
14: PUSH ecx; PUSH eax
15: LEA ecx, b LOCK; MOV eax, 0
16: LOCK CMPXCHG [ecx], edx; JZ @@end
17: CMP eax, edx; JNZ @@unlock 1
18: JMP @@end
19: @@unlock 1:
20: POP ecx; POP eax
21: CMP ecx, 0; JNZ @@skip 2
22: MOV [eax], 0
23: @@skip 2:
24: JMP @@start
25: @@end:
26: PUSH ecx; PUSH eax
27: End; {Locking phase}
28: a := a + 100;
29: b := b - 100; {Unlocking phase}
30: Asm
31: POP ecx; POP eax
32: CMP ecx, 0; JNZ @@skip 2
33: MOV [eax], 0
34: @@skip 2:
35: POP ecx; POP eax;
36: CMP ecx, 0; JNZ @@skip 1
37: MOV [eax], 0
38: @@skip 1:
39: End; {Unlocking phase}
40: End; {Transaction}
41: End;

46

4.3. Code Generation

Algorithm 16 The Bar procedure.
Procedure Bar;
Begin
If b > 100 Do

a := a + 100 &
b := b -100

Else Do
a := a + 100 &
c := c -100;

End;

are used for locking and unlocking have been removed to conserve space. The
removed locking and unlocking code is similar to that in Algorithm 15.

The first thing to notice in Algorithm 17 is the declaration of five labels.
The names of the labels are postfixed with ‘ T0’ because this code is Transaction
0 (the first transaction in the program) and because all label names must be
globally unique. These labels are jump targets which the program jumps to, for
example, when a lock cannot be acquired.

Execution of the transaction is as follows:

The locks for the conditional expression are acquired (line 6). If the locks
cannot be acquired then execution retries immediately (busy-wait). In this ex-
ample there is only one lock that must be acquired - the lock for variable b.

When the lock for variable b has been acquired, the conditional expression is
evaluated (line 7). If the expression evaluated to true then execution continues
with line 9 where the lock for the assignment statement is acquired. The assign-
ment statement only requires one additional lock (on variable a) since b is already
locked. If the lock on a is not successfully acquired then a jump to fail1 T0: is
executed where the lock on b is released before jumping to restart T0: (line 6)
and restarting (busy-wait). If the lock on a is successfully acquired then the as-
signments in line 10 and 11 are executed and the lock on a is released (line 13)
before jumping to done T0: in line 14. After jumping to done T0: the lock on b
is released (line 35) and the transaction in completed.

If the expression in line 7 evaluated to false then execution continues with
line 22, where the locks for a and c are acquired. If unsuccessful then a jump to
fail2 T0: is executed and the locks on a (if acquired) and b are released (line 29)
before jumping to restart T0: (line 6) and restarting (busy-wait). If the locks
are successfully acquired in line 22 then the assignments in line 23 and 24 are
executed before releasing the locks on a and c (line 26) and jumping to done T0:
(line 27) where the lock on b is released.

By looking at Algorithm 16 and Algorithm 17 it looks as though the code

47

Chapter 4. The Compiler

Algorithm 17 The compiled Bar procedure.

1: Procedure Bar();
2: Label
3: restart T0, fail1 T0, fail2 T0, done T0;
4: Begin
5: Begin {Transaction}
6: Asm restart T0: . . . {Lock b} . . . End;
7: If b > 100 Then
8: Begin
9: Asm {Lock a} . . . JMP fail1 T0; . . . End;

10: a := a + 100;
11: b := b - 100;
12: Asm
13: {Unlock a}
14: JMP done T0
15: fail1 T0:
16: {Unlock b}
17: JMP restart T0
18: end;
19: End
20: Else
21: Begin
22: Asm {Lock a and c} . . . JMP fail2 T0; . . . End;
23: a := a + 100;
24: c := c - 100;
25: Asm
26: {Unlock a and c}
27: JMP done T0 ;
28: fail2 T0:
29: {Unlock a and b}
30: JMP restart T0 ;
31: end;
32: End;
33: Asm
34: done T0:
35: {Unlock b}
36: End;
37: End; {Transaction}
38: End;

48

4.4. Summary

required for a simple transaction is somewhat extensive - even with the assembler
instructions removed. But in practice the assembler statements do not account
for many bytes in the final program file.

4.4 Summary

This chapter has elaborated on some of the more interesting parts of the compiler.
From parsing, using the GOLD Parsing System, to type checking. The use of the
CMPXCHG instruction and examples of locking protocols for micro transactions
were presented.

49

Chapter 5

Experiments

The experiments were performed on a PC with the following specifications: One
2.4 GHz Intel Core 2 Duo E6600 Pentium processor with 2 GB of DDR2 RAM
on an ASUS P5B-Deluxe motherboard with a 1,066 MHz FSB1. The experiments
were performed in Microsoft Windows XP with service pack 2.

The tested programs were compiled with the Codegear Delphi 2007 compiler
(version 11) using the ‘Release’ settings. The release settings enable optimizations
while disabling debug information and runtime checking in the compiled program.

High resolution timing is achieved by using the QueryPerformanceCounter()
function (from ‘kernel32.dll’).

5.1 Test Scenarios

Two different producer/consumer scenarios involving high contention were tested
using three different methods. In the first scenario one thread inserts elements
into a queue while another removes elements from the queue. In the second
scenario one thread is pushing elements onto a stack while another pops the
elements from the stack. In each scenario 10,000,000 elements are inserted/pushed
and 10,000,000 elements are removed/popped. Both the queue and the stack is
implemented as a doubly-linked list of records with a maximum size of 10,000
elements.

The first method uses Vex to construct the two scenarios, the second uses a
critical section with busy-wait synchronization and the third method uses critical
sections with blocking/preempting synchronization. The Windows API2 func-
tion TryEnterCriticalSection() is used to enter a critical section using busy-
wait synchronization. EnterCriticalSection() from the Windows API enters
a critical section with blocking synchronization. Both functions are found in
‘kernel32.dll’.

1Front Side Bus
2Application Programming Interface

51

Chapter 5. Experiments

Two threads, one reader and one writer, are used in both scenarios. Only two
threads are used because a dual core processor was used in the test environment.
More than two threads would increase the frequency of context switching because
the processor only has two cores.

The priority of the threads was set to REALTIME_PRIORITY_CLASS to reduce
context switching. Context switching incurs an overhead and is undesirable when
employing busy-waiting - it is the very thing we are trying to avoid. Each thread
was bound to a separate core using the SetThreadAffinityMask() function (‘ker-
nel32.dll’). This ensures that the threads do not change core (or run on the same
core) when the threads are preempted.

5.2 Results

The performance of each method in both of the two scenarios is listed in Table 5.1.
The performance of Vex is greater (6.8 seconds) when using a queue as opposed
to using a stack (8.6 seconds). This is due to higher contention on the Tail

pointer which is used as the top of the stack, as both threads continuously try
to manipulate this pointer while pushing and popping. When using a queue one
thread primarily manipulates the Head pointer while the other thread primarily
manipulates the Tail pointer. The maximum size of the doubly-linked list (10,000
elements) limits the performance of the queue, however. Adding elements to the
queue when the queue is full results in busy-waiting.

Queue Stack
Vex 6.8 s. 8.6 s.
TryEnterCriticalSection 7.0 s. 6.2 s.
EnterCriticalSection 61.8 s. 60.5 s.

Table 5.1: results

TryEnterCriticalSection outperforms Vex overall. We interpret this as
a result of using only a single lock - as opposed to Vex. Acquiring a single
lock is evidently 14.3% faster on average than acquiring multiple locks in this
experiment. Vex seems to be a little faster than TryEnterCriticalSection in
the Queue scenario and this is probably because of the overhead associated with
the function call (TryEnterCriticalSection()) into ‘kernel32.dll’.

We can see that using EnterCriticalSection is comparatively slow. This
is because EnterCriticalSection blocks the calling thread if another thread is
in the critical section, resulting in a context switch. Both test scenarios involve
high contention on the critical section which results in a high frequency of context
switching. The running time in the two scenarios, 61.8 seconds and 60.5 seconds
respectively, is a direct result of frequent context switching.

52

5.3. Summary

5.3 Summary

The experiments show that the automatic locking in Vex does not yield better
performance than using manual optimization and critical sections. In the authors
opinion, a 16.7% performance loss is, however, an acceptable performance loss
given that you no longer need to manually ensure mutual exclusion.

The experiments show that the overhead of context switching can have a
significant performance impact on small critical sections with high contention.
Busy-waiting is a more efficient alternative in this case.

The few experiments here are only an indication of the performance of micro
transactions. The two test scenarios do in no way represent a varied or com-
plete test suite and are only indicative of the performance under very specific
circumstances. Although the time frame did not allow for it, more experiments
should be performed to have a detailed comparison of micro transactions and
other approaches.

53

Chapter 6

Conclusions

Before concluding on the report, this paragraph presents a short summary of the
report up to this point. In Chapter 1 the problem setting was introduced and the
thesis about micro transactions was stated. The syntax of Vex, the Pascal based
language which was used to experiment with micro transactions, was introduced
in Chapter 2. The analysis of identifying variables that require locking was pre-
sented in Chapter 3. Followed by a description of locking protocols, points-to
analysis and the informal semantics of micro transactions. The limitations of
the implementation were described in the end of Chapter 3. The compiler was
presented in Chapter 4. Specifically, the most interesting aspects of parsing, type
checking and code generation. Chapter 5 summarized the results of the exper-
iments that were performed to compare the performance of micro transactions
with other methods.

The performance of the spin locks (busy-wait) can probably be improved
by following the approach outlined in [10]. This approach includes spinning on
a volatile read instead of spinning on the CMPXCHG instruction. Another im-
provement is the use of exponential back-off which can reduce the contention on
locks and reduce this risk of livelock.

Some of the limitations associated with micro transactions requires the pro-
grammer to write workarounds in order to write correct algorithms. Most no-
tably, that a transaction can only contain assignments and a single conditional
expression. Other approaches, such as the atomic blocks in Software Transac-
tional Memory[8], do not have such stringent limitations and, therefore, allow
the programmer to be much more expressive.

On the other hand, micro transactions are unaffected by the problem with
operations that cannot be undone during a rollback. Micro transactions are never
rolled back and do not require log keeping which plays a large part in the overhead
associated with most transactional memory methods.

The greatest problem with micro transactions is, in the authors opinion, the
lack of compositionality. It is not possible to have transactions within transac-
tions which greatly reduces the possibility of code reuse. This means that micro

55

Chapter 6. Conclusions

transactions are not suitable for use with object oriented programming. And
since the de facto programming model today is the object oriented programming
model this means that micro transactions are of little consequence in the big
picture.

As described in the conclusions of my previous work[14] there is a need for
better exclusive access methods. A composable method is needed to solve the
problems associated with writing concurrent object oriented programs. Micro
transactions are not composable and, as such, do not provide any help in this
matter.

6.1 Thesis

My thesis was this:

A compiler can, through static analysis, generate locks and the nec-
essary locking protocols to ensure mutual exclusion in micro transac-
tions. Micro transactions can make concurrent programming easier
and less error-prone. Race conditions can be avoided using micro
transactions. Micro transactions provide a programming model that
is easy to comprehend and use.

The first part of the thesis holds. A compiler can use a simple static analysis
to identify where locks are needed, generate correct locking protocols and ensure
mutual exclusion in micro transactions. Micro transactions can ease the writing of
small or simple programming problems but it fails to alleviate the larger problem
of concurrent programming: Compositionality. The programming model is easy
to understand but using it is not as easy as expected. The lack of nested If-Do
statements forces the programmer to write non-intuitive code that can justifiably
be called workarounds.

While the thesis did not hold completely there are lessons to be learned from
it. We must often try many different strategies before finding one that works.
And finding one that doesn’t work brings us a little closer to finding one that
does.

6.2 Future Work

The correctness of the points-to analysis could be proved by a formal verification.
Although this seems somewhat futile, as the applications of micro transactions
seems limited due to the lack of compositionality.

56

6.2. Future Work

It would be much more interesting to investigate if a compromise between the
simplicity of micro transactions and the compositionality of software transactional
memory could be found. Some degree of compositionality is necessary for micro
transactions in order to integrate these with a modern object oriented language
in a useful way.

57

Bibliography

[1] Gold parsing system, May 2008.
http://www.devincook.com/goldparser/.

[2] IEEE Std 802.3-2005. Ieee std 802.3 - 2005 part 3: Carrier sense multiple
access with collision detection (csma/cd) access method and physical layer
specifications - section five. Technical report, IEEE, 2005.

[3] Channel 9. Programming in the age of concurrency: Software transactional
memory, September 2006.
http://channel9.msdn.com/Showpost.aspx?postid=231495.

[4] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concur-
rency control and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987.

[5] Intel Corporation. Intel 64 and ia-32 architectures software developers man-
ual - volume 2a: Instruction set reference, a-m, April 2008.
http://download.intel.com/design/processor/manuals/253666.pdf.

[6] Deryck F. Brown David A. Watt. Programming language processors in Java
: compilers and interpreters. Pearson Education Limited, Edinburgh Gate,
Harlow, Essex CM20 2JE, England, 2000.

[7] A. Shoshani E. G. Coffman Jr., M. J. Elphick. System deadlocks. Computing
Survey, 3(2):12, June 1971.

[8] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-
posable memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 48–60, New York, NY, USA, 2005. ACM.

[9] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In Research Directions

59

BIBLIOGRAPHY

in Concurrent Object-Oriented Programming, pages 107–150. MIT Press,
1993.

[10] Mary R. Lee Michael Chynoweth. Implementing scalable atomic locks for
multi-core intel em64t and ia32 architectures, August 2007.
http://softwarecommunity.intel.com/articles/eng/2807.htm.

[11] SUN Microsystems. Rock’s transactional memory, September 2008.
http://blogs.sun.com/HPC/entry/video_transactional_memory_on_

rock.

[12] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive
pointer analysis of c. ACM Trans. Program. Lang. Syst., 30(1):4, 2007.

[13] H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Transactions of the American Mathematical Society, 74(2), march
1953.

[14] Jesper B. Christensen Simon H. Thøgersen. Concurrency models - processes
as an alternative to threads. Technical report, Aalborg Universitet, January
2008.
https://services.cs.aau.dk/public/tools/library/files/

rapbibfiles1/1199714915.pdf.

[15] Herb Sutter. The free lunch is over: a fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, 30 (3), 2005.
http://www.gotw.ca/publications/concurrency-ddj.htm.

60

Appendix A

Syntax Definition

The grammar of Vex was written in the GOLD Parser Builder, an application in
the GOLD Parsing System. The syntax used in the definition of the grammar is
a variation of BNF. The Vex grammar file is as follows:

"Name" = ’Vex’
"Author" = ’Jesper Christensen’
"Version" = ’1.0’
"About" = ’Verbose Experimental Concurrent Language’

"Case Sensitive" = ’False’
"Start Symbol" = <Program>
! --- Sets

{ID Head} = {Letter} + [_]
{ID Tail} = {Alphanumeric} + [_]
{String Chars} = {Printable} + {HT} - [’’]

! --- Terminals

Identifier = {ID Head}{ID Tail}*
CharLiteral = (’’{Printable}’’)

| (’#’{Number}{Number}*)
StringLiteral = ’’ {String Chars}* ’’
IntegerLiteral = {Number}{Number}*
FloatLiteral = {Number}{Number}*[.]{Number}{Number}*

Comment Line = ’//’
Comment Start = ’{’ | ’(*’
Comment End = ’}’ | ’*)’

! --- Rules

<Program> ::= ’program’ identifier ’;’ <Declarationlist> <Stm block> ’.’

!!!!!!!!!!!!!!!!!!!!!!!!! declarations !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

<Declarationlist> ::= <Declaration> <Declarationlist>

61

Appendix A: Syntax Definition

|

<Declaration> ::= ’Var’ <Var decl list>
| ’Type’ <Type decl list>
| <ProcDecl>
| <FuncDecl>

<ProcDecl> ::= ’procedure’ Identifier <formal parameters> ’;’ <Declarationlist> <Stm block> ’;’

<FuncDecl> ::= ’function’ Identifier <formal parameters> ’:’ <Type> ’;’ <Declarationlist> <Stm block> ’;’

<Var decl list> ::= <Var decl> ’;’
| <Var decl> ’;’ <Var decl list>

<Var decl> ::= <Identifierlist> ’:’ <Type>

<Identifierlist> ::= Identifier
| Identifier ’,’ <Identifierlist>

<Type decl list> ::= <Type decl> ’;’
| <Type decl> ’;’ <Type decl list>

<Type decl> ::= Identifier ’=’ <Type>
| Identifier ’=’ <Type> ’^’
| Identifier ’=’ ’record’ <Var decl list> ’end’
| Identifier ’=’ ’thread’ <formal parameters> <Declarationlist> <Stm block>

<Type> ::= Identifier

<Formal parameters> ::= ’(’ <Par decl list> ’)’
|

<Par decl list> ::= <Var decl>
| <Var decl> ’;’ <Var decl list>

!!!!!!!!!!!!!!!!!!!!!!!!! Statements !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

<Stm list> ::= <Statement> ’;’
| <Statement> ’;’ <Stm list>

<Statement> ::= <Assign stm>
| <Stm block>
| <Call stm>
| <Free stm>
| <If stm>
| <Ifdo stm>
| <Spawn stm>
| <For stm>
| <While stm>
| <Repeat stm>

62

<If stm> ::= ’if’ <Expression> ’then’ <Stm block>
| ’if’ <Expression> ’then’ <Stm block> ’else’ <Statement>

<Ifdo stm> ::= ’if’ <Expression> ’do’ <Assign stm>
| ’if’ <Expression> ’do’ <Assign stm> ’else’ ’do’ <Assign stm>

<Stm block> ::= ’begin’ <Stm list> ’end’

<Assign stm> ::= <Assignment>
| <Assignment> ’&’ <Assign stm>

<Assignment> ::= <Qualified identifier> ’:=’ <Expression>
| <Qualified identifier> ’:=’ ’@’ <Qualified identifier>
| <Qualified identifier> ’:=’ ’new’ <Type>
| <Qualified identifier> ’<=>’ <Qualified identifier>

<Free stm> ::= ’free’ <Qualified identifier>

<Call stm> ::= Identifier
| Identifier ’(’ <Expression List> ’)’

<For stm> ::= ’for’ Identifier ’:=’ <Expression> ’to’ <Expression> ’do’ <Statement>
| ’for’ Identifier ’:=’ <Expression> ’downto’ <Expression> ’do’ <Statement>

<While stm> ::= ’while’ <Expression> ’do’ <Statement>

<Repeat stm> ::= ’repeat’ <Stm list> ’until’ <Expression>

<Spawn stm> ::= ’spawn’ <Type>
| ’spawn’ <Type> ’(’ <Expression List> ’)’

!!!!!!!!!!!!!!!!!!!!!!!!! Expression !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

<Expression> ::= <Expression> <Rel op> <Add Exp>
| <Add Exp>

<Rel op> ::= ’>’ | ’<’ | ’<=’ | ’>=’ | ’=’ | ’<>’

<Add Exp> ::= <Add Exp> <Add Op> <Mult Exp>
| <Mult Exp>

<Add Op> ::= ’+’ | ’-’ | ’OR’ | ’XOR’

<Mult Exp> ::= <Mult Exp> <Mult Op> <Negate Exp>
| <Negate Exp>

<Mult Op> ::= ’*’ | ’/’ | ’DIV’ | ’MOD’ | ’AND’

<Negate Exp> ::= ’-’ <Exp Exp>

63

Appendix A: Syntax Definition

| <Exp Exp>

<Exp Exp> ::= <Value> ’**’ <Value>
| <Value>

<Func Call> ::= Identifier ’(’ <Expression List> ’)’

<Expression List> ::= <Expression>
| <Expression> ’,’ <Expression List>

<Qualified identifier> ::= Identifier
| Identifier ’^’
| Identifier ’.’ <Qualified identifier>
| Identifier ’^’ ’.’ <Qualified identifier>

<Value> ::= <Qualified identifier>
| <Func Call>
| ’(’ <Expression> ’)’
| CharLiteral
| StringLiteral
| IntegerLiteral
| FloatLiteral
| ’NOT’ <Value>

64

