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Abstract:

In this thesis, the theory of sesquilinear
forms on Hilbert spaces is addressed with
an application to d-interactions in one di-
mension. In the first part, sesquilinear
forms is studied systematically starting
with sesquilinear forms in general, and
specializing to sectorial forms. Closed
forms, and closability of forms is treated
e.g. by demonstrating different criteria of
closability. Representation of forms will
be investigated, culminating with the so-
called first representation theorem. As an
application, The Friedrichs extension will
be introduced.

In the second part, the J-interaction
Hamiltonian is under consideration. Its
domain will be specified, the resolvent con-
structed in order to compute the discrete
spectrum as singularities in the resolvent.
Furthermore, some results on integration
by parts in Sobolev spaces and a proof
of existence of non-trivial testfunctions are
included in the appendices.
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Dansk resumé/Danish abstract

Den foreliggende specialerapport er resultatet af projektarbejdet pa MATG6-semesteret pa In-
stitut for Matematiske Fag, Aalborg Universitet i efterars-semesteret 2007 under temaet "An-
vendt matematisk analyse og geometri”.

Emnet for specialet er kvadratiske former og disses anvendelse til konstruktion af Hamilton
operatorer for punkt-vekselvirkninger i én dimension, samt spektralteori for sddanne opera-
torer.

Rapporten er inddelt i to dele, hvoraf fgrste del er en gennemgang af de veesentligste forud-
seetninger for behandling af problemet i anden del. Mere konkret er der tale om en grundig
gennemregning af de relevante dele af kapitel VI i T. Katos "Perturbation Theory for Lin-
ear Operators”, som drejer sig om teorien for sektorielle kvadratiske former p& Hilbert rum,
herunder hvorledes disse former kan repraesenteres ved hjeelp af operatorer. Der er lagt vaegt
pa omhyggelig bevisfgrelse, og selve teorien er essentielt set selv-indeholdt.

Det bemeerkes, at der arbejdes i stgrre generalitet end ngdvendigt, idet den form der indfgres i
anden del er et specialtilfeelde af sektoriel, nemlig symmetrisk og nedadtil begraenset. Saledes
er forste del af rapporten ikke s gkonomisk som muligt.

I anden del defineres en kvadratisk form, som vises at opfylde visse betingelser der giver anled-
ning til at repraesentere formen ved en operator kaldet Hamilton operatoren. Dennes domaene
specificeres, og efterfolgende opstilles og lgses et egenveerdi-problem for denne operator.

Rapporten bestar af folgende kapitler:

Kapitel 2| - Sesquilinear forms on Hilbert spaces I dette kapitel indfgres teorien for
sesquilinearformer pa Hilbert rum. Der begyndes med de mest basale definitioner og resultater.
Forst for sesquilinearformer i almindelighed, og dernaest specialiseres til en bestemt type af
former - sdkaldte sektorielle former. Denne type former har deres numeriske billeder indeholdt
i bestemte sektorer i den komplekse plan, og denne egenskab ggr det muligt at definere et nyt
konvergens-begreb, som giver anledning til indfgrelse af lukkede former.

Lukkethed af former viser sig at veere afggrende i forbindelse med repraesentation af former
ved operatorer. Der findes former, der ikke er lukkede, men som dog har den egenskab at
der eksisterer lukkede udvidelser af dem. Sadanne former kaldes aflukkelige. Egenskaber for
aflukkellige former etableres, og forskellige kriterier for aflukkelighed bevises.

Kapitel [3| - Representation of forms Dette kapitel har til forméal at bevise en repraesen-
tations saetning for en bestemt type af former: teet definerede, lukkede, sektorielle sesquilin-
earformer. Denne repraesentations ssetning omtales som "The first representation theorem”.
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Dette ggres ved fgrst at vise en tilsvarende saetning for begraensede former, og anvende den
tidligere gennemgéede teori. Desuden spiller Riesz-Frechets repraesentations saetning en vigtig
rolle.

Kapitel [4] - The Friedrichs extension [ dette kapitel indfgres Friedrichs udvidelsen af
en given sektoriel operator T. Denne kan opfattes som en bestemt type af aflukning af 7.
Den szdvanlige aflukning af operatorer kunne kaldes for “operator-aflukningen” af 7', mens
Friedrichs udvidelsen passende kunne kaldes for "form-aflukningen” af T

Det viser sig, at sektorielle operatorer altid er form-aflukkelige, hvilket betyder at en bestemt
form, som er defineret udfra 1" er aflukkelig. Denne form opfylder de betingelser, der indgar
i forste repreesentations saetning, som frembringer en ny operator. Denne operator udvider
T, og besidder visse plausible egenskaber, som for eksempel selv-adjungerethed, hvis T' er
symmetrisk og halv-begraenset.

Kapitel [5| - Hamiltonian of the §-interaction Hamilton operatoren bliver introduceret
i dette kapitel. Dette foregar ved, at der defineres en sesquilinearform pa H'(R); denne form
vises at opfylde bestemte betingelser som via fgrste repraesentations ssetning inducerer en selv-
adjungeret operator, som er den gnskede Hamilton operator. Domaenet for denne operator er
a priori ukendt, og det preecise domaene bliver bestemt i dette kapitel.

Kapitel [6]- The eigenvalue problem Hamilton operatoren har preecis én egenveerdi; dette
vil blive bevist i dette kapitel. Metoden er at udlede et udtryk for resolventen for H ved hjalp
af den frie resolvent, som er resolventen for den frie Hamilton operator (fysisk set svarende
til potentialet V' = 0 som for en fri partikel). Den frie resolvent udtrykkes som en integral
operator med en bestemt integral-kerne kaldet den frie Green’s funktion.

Resolventen for H konstateres at have netop én singularitet, og det vises at Riesz projektionen
for H i denne singularitet har rang én, hvormed singulariteten tilhgrer det diskrete spektrum.

Kapitel [A] - Appendix A I dette appendiks vises nogle setninger angéende integration
af funktioner tilhgrende Sobolev rum. Blandt andet ssetninger vedrgrende partiel integration,
som bliver anvendt flere steder i rapporten.

Kapitel |B|- Appendix B Eksistensen af ikke-trivielle testfunktioner bliver taget for givet
i flere matematik bgger. Ikke desto mindre er det ikke lykkedes forfatteren af denne rapport
at opdrive et bevis for deres eksistens i litteraturen. Dette appendiks kompenserer for denne
mangel.

Desuden konstrueres der en type af glatte funktioner, som opfylder at de er identisk lig med
en udenfor et symmetrisk interval centreret om origo, er identisk lig med nul pa et mindre
symmetrisk interval omkring origo, og som antager veerdier i intervallet [0, 1]. Disse funktioner
anvendes i1 vid udstraekning i kapitel 5] til bestemmelse af domaenet for Hamilton operatoren.
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Chapter 1

Introduction

In this thesis, the theory of sectorial forms on Hilbert spaces with an application to d-
interactions is addressed. The first part consists of a thorough treatment of forms on Hilbert
spaces including their representation in terms of operators and the Friedrichs extension.

The second part treats the problem of giving meaning to the operator ”fj—; + A6”, where
A < 0 and ¢ is the §-distribution that represents a one-point interaction, or d-potential, in one
dimension centered around the origin. In addition, an eigenvalue problem involving the above
mentioned operator will be solved.

The thesis is organized in the following way:

Chapter [2| - Sesquilinear forms on Hilbert spaces: In this chapter the theory of
sesquilinear forms on Hilbert spaces is addressed. First, various definitions are given, re-
sults about forms are stated and proved. In particular the theory of sectorial forms is treated.
These are forms for which the numerical range is not required to be a subset of R, but are
semibounded in the sense that the numerical range is contained in some sector that is sym-
metric with respect to the real axis and contained in a half-plane. This property of being
sectorial is particularly useful, since it allows for introducing a new notion of convergence,
that gives rise to "closedness” of forms.

Closedness of a form is of major importance, when one wishes to represent the forms in terms
of operators. In the meantime, it is not always the case that forms are closed - some of those
admit closed extensions though. Forms that admit closed extensions are called "closable”.
Various criterions for closability of a form will be proven.

Chapter [3] - Representation of forms: This chapter is devoted to the statement and
proof of the first representation theorem. Any operator in B(H) gives rise to a bounded
form in an obvious manner, and conversely: any bounded form induces an operator in B(H).
This bijection between bounded forms and operators does not generalize to unbounded forms
without complications.

The answer is given by the first representation theorem that gives some sufficient conditions
that makes this generalization possible. These conditions are that the sesquilinear form should
be densely defined, closed and sectorial. The first representation theorem gives little informa-
tion on the domain of the associated operator. A necessary and sufficient condition for having



membership of the domain will be deduced though. This becomes relevant when the domain
of the Hamiltonian is to be specified in chapter

Chapter [4] - The Friedrichs extension: In this chapter the socalled Friedrichs extension
is treated. It is a method that furnishes a self-adjoint operator as an extension of a given
symmetric semibounded operator. In this thesis a more general version of this extension is
demonstrated. The operators are not required to be symmetric and semibounded, but merely
to be sectorial - a notion described in chapter In some cases, a symmetric operator may
be essentially self-adjoint, which means that it admits a closure, and that the closure is self-
adjoint. In other cases, this closure may not be self-adjoint. The closure always exists though,
since symmetry of an operator means that it is densely defined (implying the existence of the
adjoint) and that the operator itself is contained in the adjoint, which is known always to be
a closed operator.

This type of closure could be called the ’operator closure’ to distinguish it from another type
of closure. The Friedrichs extension is exactly this other type of closure. The procedure is as
follows: given an operator that enjoys certain properties, a sesquilinear form is associated to
the operator. This form shows up to be a closable form. Then one closes this form, to obtain
a closed form; when this has been done, the conditions occuring in the first representation
theorem are fulfilled, providing a new operator that represents this form. This operator is
an extension of the original operator, and it is called the Friedrichs extension of the given
operator. In the special case of a symmetric semibounded operator the Friedrichs extension
is in fact self-adjoint. Since the Friedrichs extension is obtained via the closure of a certain
form, this type of closure is called the ’form-closure’ of the given operator.

Chapter [5| - Hamiltonian of the J-interaction: The Hamiltonian that arises from a
certain form is investigated in chapter. In particular, its domain will be specified. In order to
do so, results from appendix [A] and appendix [B] will be used extensively. Integration by parts
of functions belonging to certain Sobolev spaces will be used. These integrations are justified
in appendix [A]

Furthermore, some smooth functions that vanish on symmetric intervals around the origin,
being identically equal to one outside a larger symmetric interval around the origin and taking
values between zero and one will be used often. The purpose is to get around the difficulties
the origin gives rise to. The existence of these is a consequence of the existence of non-trivial
testfunctions. Appendix [B] supplies the reader with these functions.

Chapter [6] - The eigenvalue problem: Once the Hamiltonian has been defined precisely,
an eigenvalue problem is formulated and solved. The strategy is to express the resolvent of the
Hamiltonian H in terms of the free resolvent - the resolvent of the Laplacian on H?(R). This
expression contains exactly one singularity, which can be shown to be a discrete eigenvalue
of multiplicity one by computing the Riesz-projection in that singularity. The corresponding
normalized eigenfunction can be determined using the boundary conditions that are specified
on the domain of H.

Appendix [A] - Prerequisites: In this appendix some techniques of integration will be
stated. More precisely, The Fundamental Theorem of Integral Calculus that states that an



absolutely continuous function on [a, b] can be recovered by integrating its derivative will be
generalized to include functions that belong to Sobolev spaces.

In addition, it will be proved that integration by parts remains to be true for functions that
belong to Sobolev spaces on [a, b]. Once this result is established, it will be demonstrated that
integration by parts can be carried out unrestrictedly of functions defined on the whole of R
that, again, belong to Sobolev spaces; membership of the Sobolev spaces will, via one of the
Sobolev embedding theorems, lead to the vanishing of the boundary terms that usually arise
in connection with integration by parts.

The reason for these generalizations is that when dealing with distributions, then one is
interested in moving the differentiation from one function to another in certain integrals -
more specifically, to move the differentiation from one slot in an inner product to the other
slot (on the cost of a change of sign). A concrete example of this is in the proof of symmetry
of the free Hamiltonian.

Appendix [B| - Existence of non-trivial testfunctions: In this appendix it is proven
that there is at least one test function on the real axis. Here, a test function is a function
defined on the real axis with values in the real axis such that it is smooth (i.e. arbitrarily
often differentiable) and has compact support; the space of such functions is typically denoted
CP(R) or C*(R) in the literature. The proof is fully constructive in the sense that an
explicit formula of a function is being given and succesively proved directly to be endeed a
test function.

Furthermore, it will be shown how one can construct a test function with support of a given
size called the radius of mollification. This will become relevant in specifying the domain
of the operator that is associated to the form h that was defined in chapter In doing so,
some smooth functions that are equal to one outside a symmetric interval around the origin,
equal to zero on some strictly smaller symmetric interval around the origin and taking values
between zero and one are needed - and here it is important to be able to control the size
of the support (radius of mollification) of the test function. Finally, such functions will be
constructed by convolution.

The reason for presenting a proof of the existence of test functions is the authors discontent
with not being able to find a solid proof anywhere in the literature, together with the impor-
tance of the supply of test functions in a variety of situations, e.g. in the theory of distributions

(first of all).

Notation

Throughout this thesis, the notation (+|-) will mean the inner product on a given Hilbert space,
unless otherwise is explicitly stated. Also, when nothing else has been stated, then || - || means
the usual norm on L?(R).

The smooth functions that are constructed in appendix [B] are usually called ¢, and for em-
phasis, ¢, v to denote where the functions are non-zero.
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Preliminaries






Chapter 2

Sesquilinear forms on Hilbert spaces

In this chapter, the theory of sesquilinear forms on Hilbert spaces will be addressed. The
presentation given here is based on [7] chapter VI, and is a detailed elaboration of the theory
developed in that book. The purpose is to provide a part of the prerequisites for the problem
to be solved later.

Definition 2.0.1 Let H be a Hilbert space, and D a dense subspace of H. A map t : DxD —
C is said to be a sesquilinear form on H, if t(-,v) is linear for each v € D and t(u,-) is
conjugate linear for each u € D. The subspace D is called the domain of t, and will be denoted

by D(t).

Remark: Strictly speaking, the domain of t is D x D, but it is custom to call it D. This
custom will be followed in this thesis.

Definition 2.0.2 Let t be a sesquilinear form on a Hilbert space H. A sesquilinear form s on
‘H is said to be

a restriction of t, if D(s)
an extension of t, if D(t)

C D(t) and s(u,v) = t(u,v) for all u,v € D(s).
C D(s) and s(u,v) = t(u,v) for all u,v € D(t).

Definition 2.0.3 A quadratic form t' on H is defined to be the restriction of a sesquilinear
form t on H to the diagonal in D x D, i.e.
t'(u) :== t(u,u), ue€D.

The ””” on the quadratic form t’ will be suppressed, since the sesquilinear form can be recovered
from the quadratic form:

Proposition 2.0.4 (Polarization identity) Let t be a sesquilinear form on H. For any
u,v € D(t) we have

—_

3
12tu+z v
k=0

Proof: Expanding the terms t(u + i*v) using sesquilinearity and rearranging them gives the
desired. |
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Definition 2.0.5 Let t,t1,ts be sesquilinear forms on H and o € C. Then we define t; + to
and ot as follows:

{D(t1 + 1) = D(t) N D(ty) o {D(at) =D(t)
(t1 + t2)(u,v) = t1(u,v) + to(u,v) (at)(u,v) = at(u,v)

Furthermore, the unit form 1 and the zero form 0 are defined as follows: D(1) = H, 1(u,v) =
(ulv), and D(0) = H, O(u,v) = 0 respectively. Here (ulv) denotes the inner product on H.

Note that with the definition above, 0t C 0, where strict inclusion occurs, if and only if D(t)
is a proper subspace of H.

Definition 2.0.6 A sesquilinear form t on H is said to be symmetric, if

Yu,v € D(1) : t(u,v) = t(v,u),

where the bar denotes complex conjugation.

Proposition 2.0.7 A sesquilinear form t on H is symmetric if and only if t(u) € R for all
u € D(t).

Proof: = If t is symmetric, then t(u) = t(u,u) = t(u, u), so t(u) € R.

<«: Using the polarization identity, write t(v,u) = iZizo ikt(v + iku), which is equal to
%22:0 ikt(v + i*u), since t(u) € R. Expanding the terms, rearranging and collecting them
gives that this equals %Zizo i*t(u + i*v), which again equals t(u,v), by the polarization
identity. |

Definition 2.0.8 Let t be a sesquilinear form on H; the adjoint form t* of t is defined as

D(t") = D(t), t* (u,v) = t(v,u).

It is immediate, that t is symmetric if and only if t = t*, and trivial verifications show the
identity (a1ts + agte)* = ant] + azts.

Definition 2.0.9 For an arbitrary sesquilinear form t on H, define the forms b and € by:

D(h) =D(t) and D(¢) =D(t)
h=2(t+t) b= (t—t")

For arbitrary u,v € D(t) we have that

(w0 = (50 ) (w,0) = (5 + () (w,0)
_ %t*(u, o) + %(t*)*(u,v) _ %t*(u,v) + %t*(v,u)
1, 1I— 1, 1
= §t (u,v) + §t(u,v) = §t (u,v) + §t(u,v)
= h(u,v),

so b is symmetric; similarly it can be shown that € is symmetric.
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Notation 2.0.10 Since h+ i = L(t+t*) + i (t —t*) = t the forms b and € will be called the
real and imaginary parts of t respectively. They will be denoted by b := Ret and € := Im t.

Definition 2.0.11 A sesquilinear form t on H is called

e bounded, if
M =0 Vu,v € DY) ¢ [t(u, )] < Mful o] (2.1)

o unbounded, if it is not bounded.

Definition 2.0.12 Let t be a sesquilinear form on H. The quantity
1t = sup{|t(u, v)| [ u,v € DY), [ul = [v]| =1},

which belongs to [0,00] is called the norm of t.
Proposition 2.0.13 A sesquilinear form t on H is bounded if and only if ||t|| < oo.

Proof: =-: Assume that t is bounded; then [t(u,v)| < M]||ul|||v] for all u,v € D(t) and
for some M > 0, which is independent of u and v. In particular: [t(u,v)] < M, when
|lu|| = ||v]| = 1. This implies that [[t|| < M, so ||t|| < oo, since M < oo.

<: Assume that [[t]] < oo and let u,v € D(t); if uw = 0 or v = 0 (or both), then (2.1)) is
fulfilled, so assume that u,v € D(t) \ {0}; then |t(||u|| = u, |v]|~1v)|] < ||t]| < co. This implies
that [t(u,v)| < |[t][[Jull|lv]]. Put e.g. M := |||, and (2.1) is thus seen to be fulfilled. [ |

An unbounded form may be semibounded in a sense defined in the following:

Definition 2.0.14 A symmetric form b is said to be bounded from below, if
Iy €R Vu € D(h) : hu) > 7lful®.

Any number v obeying the formula above is called a lower bound of §. The number

sup{v|y is a lower bound of b} is called the lower bound of b, and is denoted by ~y. That
b is bounded from below with a lower bound ~y is denoted h > ~. If h > 0, then b is called
non-negative.

Proposition 2.0.15 For a symmetric non-negative form t, we have:

Yau,v € D(t) : [t(u,v)| < t(u)2t(v)z. (2.2)

The proof of this proposition is inspired by the proof given in [13] for the Cauchy-Schwarz
inequality for inner products. It is just adapted here for non-negative symmetric forms that
need not be strictly positive, where strict positivity means non-negativity together with the
condition that t(u) = 0 implies v = 0.
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Proof: There is an a € C with |a| = 1 such that at(v,u) = [t(v,u)| = [t(u,v)| € R. Now, for
any r € R we have
t(u —rav) = t(u — rav,u — rav)
= t(u,u) + t(u, —rav) + t(—rav,u) + t(—rav, —rav)
= t(u) + —rat(u,v) + (—ra)t(v,u) + [ra*t(v,v)
= t(u) — rat(v,u) — rat(v, u) + 72 a*t(v)
= t(u) — 2r|t(u,v)| + 2t(v) > 0. (2.3)

If t(v) = 0, then (2.3 is violated for r > %, unless |t(u,v)| = 0. Therefore |t(u,v)| =0,
whence ([2.2)) is fulfilled.

If t(v) > 0, then putting r := % one gets:
[tu, ) *, [t(u,v)? |t(u, v)[?
t(u) — 2 = t(u) — 0
W=t T W 20
or equivalently: |t(u,v)| < t(u)%t(y)% m

Note that ||1]| = 1 by Prop. [2.0.15} and ||0]] = 0.
The following corollary corresponds to the triangle inequality for norms.

Corollary 2.0.16 Let t be a symmetric non-negative form. Then

Yau,v € D(t) : tu+v)2 < t(u)? + t(v)2.

Proof:
tlut+v) = tHu+v,u+v)=1tu)+ t(uv)+ tv,u) + t(v)
t(u) + t(u,v) + t(u,v) + t(v) = t(u) + 2 Re[t(u, v)] + t(v)
< Hu) + 2|t(u,v)| + t(v)
< t(u) + 2t(u)%t(v)% + t(v), by Prop.
= (tw? + 1))
which implies that t(u + v)% < t(u)% + t(v)% |

Proposition 2.0.17 Let t be any sesquilinear form. Then

Vu,v € D) : (u+v) + t(u —v) = 2[t(u) + t(v)].

Proof: Let u,v € D(t) be given; sesquilinearity of t gives
tu+v) +t(u—v) =tlu+v,u+v)+t(u—v,u—v)
= tu)+ t(u,v) + t(v,u) + t(v) + t(u) + t(u, —v) + t(—v,u) + t(—v, —v)
= 2t(u) + 2t(v).
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Proposition 2.0.18 Let t be a symmetric non-negative form. Then
Vu,v € D(t) : t(u+v) < 2[t(u) + t(v)].
Proof: Since t > 0 one has that t(u 4+ v) < t(u 4+ v) 4+ t(u — v). Prop now yields:
t(u+v) < tlu+v)+ t(u—v) =2[t(u) + t(v)].

Proposition 2.0.19 Let b, ¢ be symmetric forms, where D(h) = D(¢), and assume that € is
non-negative. Then the following is true:

Proof: Since h(u,v) - ¢ € [0,00] for some ¢ € C, |¢| =1, and |h(u,v)| = |h(u,v) - ¢| it can be
assumed without loss of generality that h(u,v) € [0, 00[. The polarization identity

=

[3M > 0Vu e DY) : |h(u)| < Me(u)] = [\m, v e D) : [h(u,v)| < Me(u)2E(v)

b(u,v) = %[b(u—l—v) ib(u+ iv) — b(u — v) — ib(u — iv)]

then reduces to h(u,v) = F[h(u + v) — h(u — v)]. Using the assumption |h(u)| < ME(u) one
gets:

()| = I+ o)~ bu—v)
100+ 0) +b(u )

<

- 4
1

= 1 2(h(u) + b(v)), by Prop. [2.0.17
1

< Q(Mé(u) + Mt(v)), by assumption

= M) + ).

()l = [b(au, 0™ "0)] < S M(taw) + ta™ ")

= 1M (0®(w) + o 2e(w))

N~ N
s
—

4
S~—
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Definition 2.0.20 Let t be sesquilinear form. The numerical range of t is defined as
O(t) == {t(u) [ u € D(Y), [ull = 1}.
Definition 2.0.21 A sesquilinear form t is said to be sectorially bounded from the left, if
v eR 30 €[0,5[:0() S {¢ € C | |Arg(¢ — )| <0},

where Arg denotes the principal value.

The number v is referred to as a vertex of t, and 6 as a corresponding semi-angle of t.

The numbers v and # are not unique, since any number smaller than v is also a vertex, and
any number in [0, 5[ larger than 6 is also a semi-angle.

Proposition 2.0.22 Let t be a possibly non-symmetric form. Then t is sectorially bounded
from the left with vertex v and corresponding semi-angle 6 if and only if

b=y and  [t(u)] < (tan@)(h —7)(u), we D(Y),
where h = Ret and € = Im t.

Proof: =: Assume O(t) := {t(u) | u € D), ||u|| =1} C{( € C | |Arg(( —7)| <
|Arg(t(u) — )| < 6 < 7 for all w € D(t) with |lu|| = 1; this implies that Re(t(u) —
so Re(t(u)) > 7 and albo Re(t(u)) > ~|lul/?, since ||ul| = 1. Since h(u) := (Re )( ) =

T+ t)(u) = 2t(u) + 3t (u) = Tt(u,u) + 3t (u,u) = St(u,u) + 2t(u,u) = Re(t(u)) we get
(Ret)( ) > ’YHUH2 or h( ) > VMQ, or b > . We also have £(u) := (Imt)(u) = 5 (t—t*)(u) =
t(u) — 3t (v) = FHt(u) — Ht(u) = Im(t(u)) = Im(t(u) — 7). For u = 0, the inequality is
obvious. Now, given a u € D(t) \ {0}, put v’ := ||u|| " u; then

e(w)| = [Im(t(«) — 7)| = Re(t(w') — v) tan [Arg(t(u') — 7))
< (tand)(h(u) =)
= (tan0)(h —)(u).

} hen

This implies that

[e(w)| = [lul*e(u)] < [lu]®(tan 0)(h — ) () = (tan)(h —7)(w).
<: Assume that h > v and [¢(u)| < (tan6)(h — v)(u), for all v € D(t). Assume that
x € O(t); then there is a u € D(t) with [Ju|| = 1 such that = t(u). First, if t(u) = =, then
|Arg(t(u) —v)| = 0 < 6. Now, if t(u) # v, then

rg(tlu) — = rc anM = [Arc anw
Arg(e() )| = [Arctan G |areran 0 2
| avetan @)
e =
(tan)(h —1)(w) | _
S = e
= 0,

sox € {CeC | |Arg(¢ — )| <6}. .
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Proposition 2.0.23 Let t be a sesquilinear form. Then t is sectorial with vertex v and corre-

sponding semi-angle 6 if and only if t* is sectorial with vertex v and corresponding semi-angle
0.

Proof: By definition t is sectorial with vertex v and corresponding semi-angle ¢ if and only
if () C {¢ € C| |Arg(C — )| < 8}. Also, Arg(t(u) — ) = —Arg(t(u) — 7) = —Arg(t(u) —
v), so |Arg(t(u) — )| < 0 if and only if | — Arg(t(u) —v)| = |Arg(t(u) — v)| < 6. Since
O(t") = {t*(u) € C| u € D(t*), |lul| = 1} = {t(u) € C| u € D(t), |lu|| = 1}, we have that
O(t) C {¢ & C| [Arg(C — )| < 8} if and only if O(t") C {¢ € C| |Arg(¢ — )] < 0. .

Proposition 2.0.24 Let t be a non-symmetric form, sectorially bounded from the left with
vertex vy and semi-angle 6. Put b := Ret and € := Imt; then for all u,v € D(t) it holds that

(i) (6 = 7)(w,v)] < (b —)(uw)2(h —7)(v)
(ii) [E(u, )| < (tan8)(h —7)(u)2 (h —~)(v)
(iii) |(t —)(u,v)| < (1 + tan8)(h — ) ()2 (h — 7)(v)7.

ol
[ N

w\»—A

Proof: Ad (i): Since (i —7)* = (b + (—9))* = b* + =7 = h—, h — 7 is symmetric;
furthermore h — v > 0 by assumption. Now (i) follows immediately from Prop. [2.0.15

Ad (i7): tis sectorial with vertex v and corresponding semi-angle 6, so [¢(u)| < (tan6)(h —
v)(u) for all u € D(t), by Prop. 2.0.22] Now Prop. [2.0.19 gives:

e(u,v)| < (tan0)(h —v)(w)2(h — ) (v)2, for all u,v € D(t).

Ad (ii1):
(6 =) (u, )]
(5 — ) (1w, 0) = (5 — 7 + 38) (1w, 0)] = | (5 — ) (1w, 0) + (i) (u, 0)|
< (5 — ) (u, )]+ 1(68) (1w, v)] = [(5 =) (u,0)] + [e(u, v)]
< (b= @3 (h —)(v)? + [e(u,v)|, by Prop. Z0.19
< (h—)(u)2(h—7)(v)2 + (tanf)(h —)(u)2(h — 7)(v)2, by (i)
= (1 +tand)(h—)(u)2(h —7)(v)2.

Proposition 2.0.25 Let t be a possibly non-symmetric sectorial form with vertex v and cor-
responding semi-angle 0; then

(b =)(w) <[t =) ()] < (sect) (b —7)(u).
Proof: The first inequality is shown as follows:

(b—=7)(u) = (Ret—7)(u) = (Ret)(u) —v1(u) = Re(t(u)) —71(u)
= Re(t(u) —71(u)) = Re((t = 7)(u))
< [t=7)(w)]-
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Next, the second inequality is shown. First, if h(u) = ~y||u||?, then
[(t=N(w)] = lit(w)] = [E(w)] < (tan0)(h —~)(u) =0
< (secO)(h —7)(w).

Second, if h(u) > v||ul|?, then

(t—=7)(u) = Re(t(u) —v1(u)) + i Im(t(u) — v1(w)). (2.4)
We have that
[Arg((t —7)(u))| = [Arg(Re(t(u) —71(w)) +ilm(t(u) — y1(u)))]

= |Arg(Re(t(u) — y1(w)) + i Im(t(u)))|

)
)
)17 )|

= Arctan | Im(t(w))|
= At <R<<> 1<u>>> (25)

Since tan is increasing on | — 7, 5[, the number (2.5)) is less than or equal to 6 if and only if

| T (t(u))]
Re(t(u) —v1(u))

The above inequality is true if and only if
[ Tm(t(u))[ < (tan 0) Re(t(u) — y1(u)) = (tan0)(h — v)(u),
which is true by Prop. Therefore: |Arg((t —)(u))| < 6. Now, implies that
[(t=7)(w)] = sec(|Arg((t —7)(u))]) - Re((t = 7)(u))
< (secO)(b —)(w),

where the inequality holds because |Arg((t —y)(u))| < 6 and sec is increasing on [0, 5[. W

= ’Arctan

< tan#6.

2.1 Closed forms

The notion of a ’closed form’ is central in the theory of sesquilinear forms in that it is one of
the conditions in the socalled first representation theorem (Th. that makes it possible
to represent forms in terms of operators. In that connection, a new notion of convergence is
useful. This notion will play a key role in defining closedness of a form.

Definition 2.1.1 (t-convergence) Let t be a sectorial form on H. A sequence {u,} C H is

said to t-converge to u € 'H, denoted by un, 4 u, if
(1) {un} S D(t)
(ii) up — u€H

(111) t(up, — Up) — 0, for m,n — oo.
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The sequence {uy,} is said to be t-convergent, if {u,} t-converges to some u € 'H.

Proposition 2.1.2 Let t be a sectorial form on H, and {u,} C H; then

{un} is t-convergent if and only if {u,} is (t + «)-convergent for all a € C.

Proof: From the definition of t-convergence it is seen that it is enough to show that t(u, —
Up) — 0 if and only if (t + «)(u, — upm) — 0.

<: Assume that {u,} is (t+ «)-convergent for all &« € C. Then {u,} is also (t+0)-convergent.

= Assume that {u,} is t-convergent, and let o € C be given; then {u,} C D(t), u, - u € H
and t(un, — uy,) — 0 for m,n — oco. Since u, — u, {u,} is || - || -Cauchy. Now,

(t+ @) (up — um) = Hup — um) + aflup, —up| — 0, for m,n — occ.

Consequently: {u,} is (t + «)-convergent. |
Corollary 2.1.3 With t as above, u, L if and only if uy fasit u, for all a € C.

Proof: <: If u, % 4 for all o € C, then also u, = u, or simply u, Lo

=: Given a € C; if u, — u, then ||un, — ul| — 0, and by Prop. {un} is also t + a-
tHa .
convergent, whence u,, — x for some x € H. In particular: ||u, — z|| — 0. In normed spaces

limits of sequences are unique, so x = u. Hence u,, as: Y3 |
Proposition 2.1.4 Let t be a sectorial form on H, and {u,} C H; then
{un} is t-convergent if and only if {u,} is h := Ret-convergent.

Proof: By Prop. {un} is t-convergent if and only {u,} is (t — v)-convergent; and by
Prop. [2.0.25] {u,} is (t — 7)-convergent if and only if {u,} is (h — y)-convergent. Finally,
again by Prop. {un} is (h — 7)-convergent if and only if {u,} is h-convergent. [

Corollary 2.1.5 With t as above, uy, L if and only if uy Ret .

Proof: Similar to the proof of Cor. 2.1.3] [ |

Proposition 2.1.6 Let t be a sectorial form on H, and {u,} C H; then

{un} is t-convergent if and only if {u,} is t*-convergent.

Proof: Since D(t) = D(t*) by definition of t*, we have {u, } C D(t) if and only if {u,,} C D(t*).

Since t*(up — Up) = " (Up — U, Upn — Upm) = HUp — U, Uy, — Up,) = tHup — uy) we have
t*(un, — ) — 0, for m,n — oo if and only if t(u, — uy,) — 0, for m,n — co. Consequently:
{un} is t-convergent if and only if {u,} is t*-convergent. [

Corollary 2.1.7 With t as above, uy, S if and only if uy LI
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Proof: Similar to the proof of Cor. 2.1.3] |

Proposition 2.1.8 Let t1,ty be sectorial forms on H. Then

t t2 . . 1+t
Up — U and U, — u implies u, — u

Proof: Assume that u,, — u, i = 1,2; then {un} C D), ||un —u| — 0 and & (uy, —um) — 0,
for m,n — oco. And then {u,} C D(t;) ND(t2), ||un —ul| — 0 and (t1 + t2)(up — up,) — 0, for

. t1+-t2
m,n — oo, which means that u, — u. |

Proposition 2.1.9 Let t be a sectorial form. Then

[un—t>u A vn—t>v} = [Va,ﬁé@:aun+ﬂvn—t>au+ﬂv .

Proof: «<: Put @« =0 and g =1, then v, 4 v; similarly, if « =1 and 8 = 0, then u, L

=: By Prop. and Prop. {un} is t-convergent if and only if {u,} is (Ret — v)-
convergent. It can therefore without loss of generality be assumed, that t is symmetric and
non-negative.

Given a, 8 € C. Assume that u, 4w and Up L.

Then {uy}, {vn} C D(t), which implies that {au, + Bv,} C D(t), since D(t) is vector space.
Also, ||up — ul| — 0 and ||vy, — v|| — 0, which implies that ||(cuy, + fvy,) — (au + fv)|| — 0,
since [|(aun + fon) — (au + Bo)|| = la(un —u) + B(on —0)|| < |af[jun —ull + [B[[vn — vl
Furthermore, t(u, — u,,) — 0 and t(v, — v,;,) — 0, which implies that t(a(u, — upy)) — 0,
since t(a(un — um)) = |a*t(uy — um) — 0 and t(B(un — um)) — 0, since t(B(un — Up)) =
|ﬁ|2t(un — Up) — 0.

Now, Prop. [2.0.18| gives that

t((qup + Buy) — (Qum + Bom)) = ta(u, — um) + B(vn — o))
2t(a(up — um)) + 28(B(vn — vm)).

IN

Consequently, au, + Bv, L au + fv. |
Definition 2.1.10 (Closed form) A sectorial form t is said to be closed, if

Up > u implies u € D(t), t(up, —u)—0.
Proposition 2.1.11 Let t be a sectorial form. Then the following statements are equivalent:

(i) t is closed
(ii) t* is closed
(11i) Ret is closed

() t+ « is closed for all a € C.
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Proof: (i) < (ii) : Follows from u, Sueu, S u, which is true by Cor. m
(1) & (vi7) : Follows from wy, S e u, 2 u, which is true by Cor. .
(1) & (iv) : Follows from u,, 5w < up 3w, which is true by Cor. m [

Definition 2.1.12 Let § be a symmetric, non-negative form on H. Define

{<~,~>h : D(h) x D(h) — C
(u,0)p = (5 + 1)(u,v) = blu, v) + (ulv)

It is trivial to verify, that (-, ) is an inner product on D(h). Consequently Hy := (D(h), (-, )p)
is an inner product space. The inner product (-, )y induces a norm on D(h) given by

[ully = (%Mé = (h(u) + [[ul®)2, e D(p).

For a sectorial form t, define H; := Hy, where h’ = Ret — v, and v is a vertex of t. Let
v and 72 be two different vertices of t. Then (D(t), (-, )Ret—v) and (D(t), (-, )Ret—rs) are
equal considered as vector spaces. But the inner products are different. The induced norms
|| - |Re =y, and || - |Re t—yo are equivalent though. This will not be proven.

Notation 2.1.13 Since the inner product on H is denoted by (:|-), the inner product (-,-)y
will accordingly be denoted by (-|-)y in the future.

Proposition 2.1.14 Let t be a sectorial form, and {u,} C H. Then

{un} is t-convergent if and only if {u,} is Cauchy in H;.

Proof: =-: Assume that {u,} is t-convergent. Then {u,} C D(t), Ju € H : lim;,, . ||un—ul =
0, and limy, 5,00 t(ty, — Uy,) = 0. Then, since

(Ret)(upn — um) = %(t—k ) (un, — um)
1

1 1, B S
= §t(un — Up,) + §t (Up — Up) = §(t(un — Up,) + = Upy,))

= Re(t(un — um)),

we also have that limy, ,—oo(Ret)(u, — uy) = 0. Also, since {u,} is t-convergent, {u,} is
|| - ||-convergent (by definition of t-convergence), in particular: limy,, o0 ||t —um| = 0. Now,

lJun — UmH% = |Jup — umHZRet—»y = (Ret—)(un — um) + [lun — um||27
which implies that

Hm  |up —upllf = lm {(Ret—7)(un — um) + lun — um|?}

m,n—00 m,n—00

= lim (Ret—7)(up — tm) + Hm |Juy — ]
m,n— o0 m,n—oo

= 0,
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so {up} is Cauchy in (D(t), || - [|¢) = He.

«: Assume that {u,} is Cauchy in Hi. Now ||uy — um|? = (Ret—7) + ||un — um||?, and since
1w, — um |7 — 0, and both (Ret—~)(-) >0 and || - || > 0, we have that ||u, — %] — 0. And
since H is complete, there is a u € H : ||u, — ul| — 0.

The only thing left is to show that t(u, — um) — 0. But since limy, 500 ||un — um||? = 0, and
| un — um”% = (Ret—7)(un — um) + [Jun — um”2
= (Ret)(un — um) — vllun — umH2 + [Jun — umHQa
and (Ret)(-) > ~| - ||?, we have that lim, ,—oo(Ret)(un — um) = 0. From Prop. [2.0.24] we

know that
|(Tm t) (up, — um)| < (tan@)(Ret — ) (un — um),

50 limy, 500 (Im t) (uy, — up,) = 0, and then

lim t(up, —um) = lim (Ret+iImt)(up — up)
m,n— o0 m,n—oo
= lim (Ret)(up, —um)+¢ lim (Imt)(up — upm)
m,n—00 m,n— o0
= 0.
Consequently: {u,} is t-convergent. [ |

Proposition 2.1.15 Let t be a sectorial form. If t has a closed extension s, then

Y{un} € H Vu € DY) : (un LAPEIN Hun—th—>0). (2.6)

Proof: =: Assume that t is sectorial, has a closed extension s, that v € D(t) and that
{un} C H fulfills u, - u. We want to show that |un, — ull¢ — 0. Now, since s D t, we have
{un} € D(s), ||t — ul| — 0 and s(up — ) — 0, for m,n — 00, $0 U — u. And s is closed,
so u € D(s), s(uy, —u) — 0, and t(u, — u) = §(u, — u), so also t(u, —u) — 0; but then

lun = ullf = (Ret =) (un — u) + un — ul* — 0.

<: Assume that t is sectorial, that u € D(t) and that {u,} C H fulfills ||u, — u|l¢ — 0. Then
lwn — ul|? = (Ret — ) (up — u) + ||up — ul|*> — 0. In particular: u, —u € D(Ret — ) =
D(Ret) N D(y1) = D(t), and since u € D(t) by assumption, then (u, —u) +u = u, € D(t).
Therefore: {u,} C D(t). Put h’ = Ret— . The triangle inequality (Cor. implies that

N|=
N|—=

B (un — wm)? = B (= w4 (0 — )7 < B (un —u)7 + 0 (0 — )7,

which implies
(= ) < b (ot — )+ (= ) + 20 (= ) 20 (1 = ) 2. (2.7)
Now, by assumption
lm |lu, —ul|f = lim {(Ret—7)(up —u) + |lup — ul*}
n—oo n—oo
= lim {b'(un —u) + [[upy —ul®}

n—oo

= 0,
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which implies that lim,, o §’(up,—u) = 0. This together with (2.7)) gives that lim,, 0 b’ (w,—
Um) = 0. Prop. [2.0.24 now gives that

|(Tm t) (up, — um)| < (tan 0)b (uy, — ).

Furthermore,
tim (Re)(un — ) = T {8 ( — 1) e — )
| - miggw 0 (s — ) = 0,
so finally,
mlrlLIEoo t(up, — up) = mlrilriloo(Re t+iImt)(up — um)
| = m’lrilrgoo(Re t) (up, — um) + imlggloo(lm ) (un — um)

= 0.

Note that the assumption that t has a closed extension was only needed in the first implication.

Proposition 2.1.16 Let t be a sectorial form, with vertex v. Then t is bounded on H;.

Proof: Putting s = Ret — v, we get

t(u,0)] < |y(ulv)] + [(t =) (u,v)]
< Jll(ufv)| + (1 + tan B)s(u)2s(v)2, by Prop. [2.0.24)iid)
< Plllullllvll + (1 + tan 8)||ulls[|v]ls
= [lllullllofl + (1 + tan @) [|ull[v]l
< lllulldlvlle+ (1 + tan O)[full[v]|«
= ([ + 1+ tan0)ulllv]e
Consequently, t is bounded on Hj. |

Proposition 2.1.17 Let t be a sectorial form, with vertex v. Then

t is closed <= H, is complete.

Proof: =-: Let t be a sectorial and closed form. Take a Cauchy sequence {u,,} C H;. We want
to prove that || - ||¢—limy,— o0 upn € Hy. Since {u,} C Hyis || - ||¢—Cauchy, we have that there is
a u € H such that u, 4 u, by Prop. m But t was closed, so u € D(t), and t(u, —u) — 0.
Now, ||un —ull¢ := (Re t—)(up —u) + ||un —ul[?> — 0 if and only if both (Re t—-)(uy, —u) — 0
and |ju, — ul|* — 0. But ||u, — u| — 0, since u, % u, and (Ret — v)(up, —u) — 0, since
t(u, —u) — 0. Therefore ||u, — ul||¢ — 0, whence H; is complete.
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<: Assume that t is sectorial and that Hy is complete. Let there be given a sequence {u,} C

D(t) such that wu, - u. We want to show that u € D(t) and t(u, —u) — 0. Now, since u, S,
we have that {u,} C D(t), ||un, — u|| — 0 and t(up, — uy) — 0, for m,n — oo; and by Prop.
{un} is Cauchy in H¢. The space H¢ is complete, so Jx € Hy @ limy, o0 ||t — z||¢ = 0.
But now, lim,_.{(Ret — v)(u, — 2) + |Jup, — z||*} = 0, which implies ||u, — z|| — 0 and
(Ret — v)(up, — x) — 0, and also (Ret)(u, — ) — 0. And then t(u, — x) — 0, since
|(Imt)(u, — x)| < (tan)(Ret — v)(u, — x). Since both ||u, — z|| — 0, ||u, — ul| — 0 and
that limits of sequences are unique in normed spaces, then z = u. And then u € D(t), and
t(u, — u) — 0, whence t is closed. |

Proposition 2.1.18 In a normed space, u, — u implies that ||u,|| — ||ul|.

Proof: Using the substitution v’ = u,, — u, the triangle inequality reads

I+ ull = flunll < [l + Nl = lun = wll + [l
This inequality implies ||uy,|| — [Ju|| < ||un — ul||, and interchanging u and w,,, we also get that
llull = llunll < ||un — u||. The last two inequalities give that
[l = Null] < flun = ull.
Consequently, u,, — w implies ||u,|| — ||ul| [ |

Note that the proposition can also be stated as "In a normed space, the norm is sequentially
continuous” (in fact uniformly continuous).

Proposition 2.1.19 In an inner product space H, if || - || — limp—oo upn and || - || — limy—oo vp
exist, then lim,,_, o (uy|vy,) also exists.

Proof: Write:

(unlvn) = (un — um|vn) + (um|vn)
(Um|vm) = (umlvm —vn) + (Um|vn).
Now,
[(unlvn) = (um|vm)| = [(un — umlvn) = (Wn|vm — vn))]
= [(un — wm|vn) + (Um|vn — Vi)
< (un = wmfvn)| + [(um|vn — vi)|
< Mun = wmllllvm |l + [lum|lf[on — v (2.8)
Since || - || — limp—o0 un and || - || — lim,—o0 vy, exist by assumption, we have w, — w and
v, — v for some u,v € ‘H. By Prop. 2.1.18 ||u,|| — ||u|| and ||v,| — ||v||. Also {un}, {vn}
are || - [[—Cauchy. The expression in (2.8) now goes to zero, and thus {(uy,|v,)} is Cauchy,
hence convergent by completeness of C. [ ]

Proposition 2.1.20 Let t be a sectorial form. If u, 4w and Un, 4 v, then

lim t(uy,vy) exists if and ony if [Va € C: lim (t+ a)(up,vy) 6332'5153] .

n—oo



2.1 CLOSED FORMS 23

Proof: «: Putting a = 0 yields the desired.
= The t-convergence of {u,} and {v,} imply that || - || — limy—cc up, and || - || — limp—00 vy
exist. By Prop. [2.1.19] lim,, o (un|vy) also exists. Given a € C we get

(t+ @) (un, vn) = t(un, vy) + auy|vy),

and we see that lim,, . t(up, v,) exists only if lim,, o0 (t + @) (up, vy,) does. [ |

Proposition 2.1.21 Let t be a sectorial form. If u, 4w and Up, 4 v, then limy, oo t(un, vy)
exists. If, in addition t has a closed extension s and u,v € D(t), then this limit is equal to
t(u,v).

Proof: Let t be a sectorial form with vertex v, and assume that u, 4 wand Un L. By Prop.
2.1.20 limy,— 00 (t — ) (un, vy) exists if and only if lim,, o t(un, v,) exists. It can therefore
without loss of generality be assumed that t > 0. Write

t(un,vn) = t(up — Um, V) + t(Um, V)

(U, V)

(U, Uy, — ) + (U, Up)-
Now,

t(Un, vp) — (U, Um) = Hup — Um, Un) — (U, Uy, — V)

= t(un — Um, Un) + t(um-; Up — Um)a
so putting h = Ret we get from Prop. [2.0.244ii):
[t(uns vn) = tum, )| < [Hun — U, 0n)| + [((tm, v — V)|

< (1+tan®) {f)(un — Um)%b(vn)% + h(um)%b(vn - Um)%}
(2.9)

We know from Prop. [2:.1.4] that t-convergence is equivalent to h-convergence, so therefore
b(un — up) — 0 and h(v, — vy) — 0 as m,n — 0.

Furthermore,
h(un - um) b(un) + h(uny _um) + h(_umy Un) + h(um)
= h(un) + h(um _um) + h(um _um) + b(um)v since h = h*
= b(un) + 2(Reh) (un, —um) + bH(um) (2.10)
— 0

i

where the three terms in (2.10]) are all non-negative. Therefore h(u,,) — 0, in particular:
{b(um)} is bounded. Similarly, {§(v,)} is bounded. From this we infer, that the right-hand
side of (12.9) goes to zero. Consequently, {t(u,,v,)} is Cauchy, hence convergent.

Suppose in addition, that u,v € D(t) and that t has a closed extension s. Write

t(up,vn) = Hup —u,vp) + t{u, vy)
t(u,v) = tlu,v—vy)+ t(u,vy).
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Now,

t(up,vy) — t{u,v) = tup —u,v,) — t{u,v —vy)
= t(up —u,vy,) + t(u, v, —v)

= s(up —u,vy) +5(u,v, —v), since s D t,

so with h = Res one has

IN

|s(wn, — u,vn)| + |8(w, v, —v)

< (1+tanb) {h(un - U)%f)(vn)

|t(unavn) - t(u,v)| |
1
2

+b(w) (v, — v)%} o (2.11)

Now, since s is closed, b is also closed by Prop. [2.1.11} then h(u, — u) — 0, h(v, —v) — 0,
{h(vy,)} is bounded and h(u) > 0. Therefore the right-hand side of (2.11)) goes to zero, so

lim t(uy,vy,) = t(u,v).
n—oo

2.2 Closable forms

A slightly more general notion than that of a ’closed form’ is the notion of a ’closable
form’. Closable forms permit closed extensions, which is important in the construction of
the Friedrichs extension in chapter [

Definition 2.2.1 Let t be a sectorial form. Then t is said to be closable, if there exists a
closed extension of t.

Definition 2.2.2 For a closable form t, the closure t of t is defined as follows:

D) ={ue™ | Hu.} CDH) : up — u}

{{(u, v) = limy, o0 t(up,vy),  for some u, A U, Up Lo
Proposition 2.2.3 { is a well-defined sesquilinear form.

Proof: D(t) is a subspace of H : Given u,v € D(t) and a, 3 € C. Since u,v € D(t), uy, R u,
Un =5 v for some {un}, {vn} € D(t). D(t) is a subspace, so au, + [fv, € D(t), and then by
Prop. , Uy + Poy, L au+ Bv. By definition of D(t), au + v € D(1).

t is sesquilinear : Given u/,u”,v € D(t) there are sequences {ul, }, {u”},{v,} C D(t) such that
ul, LA ', ul 4 " and Up, A v; then by Prop. limy, 00 t(ul,, vy) and limy, o0 t(ul, vy,)
exist, and

t(u',v) + t(u”,v) = lim t(ul,,v,) + lim t(u),v,)
n—oo n—oo
= lim {t(u},,vn) + t(ujs, vy)}
n—oo

= lim t(u), +ul,v,), by sesquilinearity of t.
n—oo
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By Prop. ul, Lo and ull 2w implies ul, +ul S+, sou' +u” € D), and then

by Prop. E1.21]

t(u' + " v) = lim t(u), +ul,v,) = t(u',v) + tu”,v).

n—od

This shows that t is additive in the first variable. Homogeneity in the first variable and
conjugate linarity in the second variable can be shown in a similar fashion.
t is well-defined: It must be shown that lim,_, t(u,,v,) depends only on u and v and not

on any choice of {uy} and {v,}. So assume that u, S ou, ul, L owand v, S v v, L v. By
Prop. [2.1.21] the limits of {t(un,v,)} and {t(u,,v],)} both exist. Next, we show that they
coincide. Since t is closable, there exists a closed sesquilinear form s that extends t. Then

t . s
U, — u implies u, — u. Now,

lim t(up,v,) = lim s(up,v,), sinces Dt
n—oo n—oo

= s(u,v), by Prop. 2:1.2]] since s is closed

3 /! / : : /! 5 ) S
= lim s(u,,v,), since s is closed, u,, = u, and v, — v

n»-n
n—oo
. . .
= lim t(uy,,v),).
n—oo

Proposition 2.2.4 t extends t.

Proof: Given u,v € D(t), then take u,, = v and v,, = v for all n € N. Then u, 4 w and

Un 5, 50 U,V € D(t), and t(u,v) = limy, o0 H(tn, v5) = t(u, ). [
Proposition 2.2.5 If t is closable, then any closed extension of t also extends .

Proof: Assume that s is a closed extension of t. Given u € D({); then there is a sequence

{un} C D(t) such that wu, % u, but then u, = u, since s extends t. Since s is closed, we
have that u € D(s). Therefore, D(t) C D(s). Now, let u,v € D(t); then there are sequences

{un},{vn} € D(t) such that u, % wand v, 5 v. Then,

t(u,v) = lim t(up,v,) = lim s(uy,v,), sinces Dt
n—oo n—oo
= s(u,v), by Prop.[2.1.21] since s is closed.
Consequently, t C s. |

Proposition 2.2.6 Let t be a closable sectorial form. Then ©(t) is a dense subset of (%),
i.e. O(t) C O(t) and O(t) 2 O(Y).

Proof: If z € O(t), then z = t(u) for some u € D(t), ||u|| = 1; but then z = t(u) by Prop.
where u € D(t), ||ul| = 1, so x € O(t), whence O(t) C O(%).

Assume that x € O(t); then x = t(u) for some u € D(t), ||ul| = 1. Since u € D({), there is a

sequence {u } C D(t) such that u/, % w. Tt can be assumed without loss of generality that
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{u,} € D)\ {0}. Put u, = |lu)||"tu),. It will now be proven that u, 5 u. Let v be a

vertex of t; by Cor. [2.1.3] u, 4 wif and only if uy, = u, S0 it can be assumed without loss
of generality that t > 0. We have that

= wll < Jlun = |+ [y, — wll = g ™ g, = |+ [, = ul
= Nl = = Dl + g, = ull = [l 17 = Ul + g, = ll
= 1= Jlug Il 4 llup, =l (2.12)

: t . . e
Since u), — w, then in particular u], — u, which implies by Prop. [2.1.18|that ||u},|| — |lu| = 1.
Therefore, the expression (2.12)) goes to zero, so ||u, — u|| — 0.

Since ||ul,|| — 1, we have that IN(3) € NVn > N(3) : & < |ju},|| < 2, and this implies that

2 > |ju},||7! > 2, whenever n > N(3). Put M = max{2,\|u’1|]_1,...,Hu;\](%)_IH_l}. This
shows that {||u},||!},>1 is bounded with |Ju}|| =t < M for all n € N. Now,

(L7 T [V 7

L A A L e e [T

(0 [~ ) + g ™ g, = [l [ e, ) (= g |~ e, s 1™ 0a) + (=l [ er,)

(2 ™% B ¥ PP RN [ e G ARV e o [N [ Y

<M (Hu) + i, =)+ H—un,u) + Huy,))
= M2t<u/n - u/m)v
and since t(||ul,|| " tul, — [[ul, || Trul,) = t(un — um), and that limg, ,—eo t(ul, — ul,) = 0, we

also have limy, p—oo t(tn, — ) = 0. Consequently: wu, Lo By Prop. t has a closed

extension, since t is closable. Prop. [2.1.21| now gives that © = t(u) = lim, oo t(u,) =
limy, o0 t(uy,), where {t(u,)} C O(t); therefore x € O(t). |

Corollary 2.2.7 Let t be a closable sectorial form. Then t is also a sectorial form, and a
vertez vy, and corresponding semi-angle 6 for t can be chosen equal to the corresponding values
for t.

In particular: if § is a closable symmetric form bounded from below, then & and § have the
same lower bound: vy = Vi

Proof: Assume that t is closable and sectorial with vertex « and corresponding semi-angle 6.

We have by Prop. [2:2.6] that

o(t) 2 0(t) 2 (Y.
And since sector := {z € C | |Arg(z — )| < 0} is closed, and sector O ©O(t), then sector D

O(t) D O(t), whence t is sectorial with vertex v and corresponding semi-angle 6. [ |
Proposition 2.2.8 { is a closed extension of t.

Proof: t extends t : True by Prop.

t is closed : By Prop. [2.1.11] t is closed if and only if Ret — ~ is closed, where v is a vertex
of {, so it can be assumed without loss of generality that f is symmetric and non-negative.
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Suppose now that u, — u € H. Now, {u,} € DA, ||un — u|| — 0 and t(u,, — um) — 0, for
m,n — oo. We know that for each u,, € D(t) there is a sequence {u},,>1 C D(t) such that

up R Uy, for m — oo. But t extends t by Prop. [2.2.4 so we also have u" 4 Up. Since t has
a closed extension s by assumption, we get from Prop. [2.2.5|that t C s; also: { is sectorial by

Cor. [2.2.7, so now Prop. [2.1.15[ applies, and we see that " 4 Up, for m — oo is equivalent
to |lupt — up|l; — 0, for m — oo, or explicitly:

lim ||[ul' —up||=0 and lim t(u* —u,) = 0. (2.13)
m—00 m—00

Let € > 0 be given. We now have from (2.13) that

2
Vi, € D(T) Jvn € {4zt C D) < [vn — unl| < g A Hvn —up) < % (2.14)
And similarly for {u,,}:
- & € . €2
Vi, € D(t) oy, € {ug, te>1 SDO) : ||om — un|| < 3 AN (v —um) < 3 (2.15)
Furthermore |lu,, — u|| — 0, so
IN1(e) € N'Vn > Ni(e) : |Jup —ul| < %
From the assumption u, L uforn — o0, we have t(u, — ) — 0, for m,n — oo, so
~ 62
ANy (e) € NVm,n > Na(e) : t({un — um) < — (2.16)

5
Put N(e) := max{Ni(e), Na(e)}. We claim that v, L.

First, {v,} € D(t), since {v,} C {up'} C D(t).

Second, when n > N(e) we have

€ €

so limy, o0 ||on, —ul| = 0.

Third, when m,n > N(e), the triangle inequality and the estimates (2.14]), (2.15)) and (2.16))
give

t(vn—vm)% = {(vn—vm)%
- 1 - 1 - 1
< o — up)? + tup — U )2 + t(ty, — vy 2
1 1 1
€2\ 2 €2\ 2 €2\ 2
< N N R
(5) < (5) +(5)
_ e, ¢
3 3 3
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s0 limyy, p—oo t(vy, — vp,) = 0. As for now, it is shown that {v,} C D(t), that ||v, —u| — 0 and
that lirflmmﬂoo t(vy, — vy) = 0. Ergo: vy, L uas claimed, where {v,} C D(t). Consequently:
u € D(t).

Next, it will be proven that t(u, —u) — 0. Since u € D({), there is a sequence {u,,} C D(t)
such that wu,, L for m — oo. Prop. , and the fact that u, ~—£> Uy, for m — oo now gives

that u,, — um, LA Uy, — u for m — oo, which implies that u, — u, A Uy, — u for m — oo. Now,
for any n € N we get that

t(up, —u) = t(up, —u,uy —u)

= lim t(up — Um, Uy — upy), by Prop. [2.1.21

m—0o0

= lim t(uy — um).
m—0o0

Since u, A u, we have limy, p—.c0 t(ty — ) = 0; and 1im,, oo H(ty, — Uy, ) exists for all n € N.

Th. 8.39 in [2] now gives that lim,_.. t(u, — u) exists, and

lim t(u, —u) = lim lim t(u, —up) = lim  t(u, — uy) = 0.
n—oo n—00 M—00 m,n— 00

We have now proven that u, —» u = u € D(t), t(u, — u) — 0, and this means by definition
that t is closed. |

Note that Prop. and Prop. can be expressed by saying, that t is the smallest closed

extension of t.

Proposition 2.2.9 Let t be a sesquilinear form: Then t is closed if and only if t is closable
and t = t.

Proof: «: tis closed by Prop. so t is closed since t = t by assumption.

= If t is closed, then t is a closed extension of t, so t is closable. Since t is a closed extension
of t, we have t C t. By Prop. t D, since t is a closed extension of t. Consequently:
t=t. |

Proposition 2.2.10 Let t be a sectorial sesquilinear form on H. Then the following five
statements are equivalent:

(i) tis closable.

(i) Y{un} C H Yu € D(t) : (un b= JJup — ull — o)
(iii) V{un} CH Yu € D) ; (un b= t(uy —u) — 0)
(iv) V{un} CH : (un L0 = t(up) — o).

(v) The completion of Hy, denoted by Hf, is embeddable in H, i.e. there is a linear map
i1 Hf — H that is injective and continuous.
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Proof: (¢) = (¢¢) : This is the content of Prop. [2.1.15

(i2) = (%) : Given {u,} € H and u € D(t) such that u, % u; then by assumption
llun — ull¢ — 0. This implies that (Ret — v)(un, — u) + |Jun, — ul|> — 0. And since both
terms are > 0, then in particular: (Ret — 7)(un, —u) — 0. Since u, % u by assumption,
un — ul| = 0, so (Ret)(un, —u) — 0 as well. Prop. [2.0.24fii) gives that |(Imt)(u, — u)| <
(tan®@)(Ret — ) (un — u), so (Imt)(u, —u) — 0. Consequently:

lim t(u, —u) = lim {(Ret)(up —u) + i(Imt)(uy, —u)}

n—oo n—oo

= lim (Ret)(up —u) +¢ lim (Imt)(uy — u)

= 0.

(¢¢2) = (vi) : Tautology.

(vi) = (v) : Consider the inclusion i : (D(t), | - |l¢) — (H, | - ||), i(u) = u, v € D(i) = Hy.
1
3

Note that ||ull¢ = [(Ret—7)(u) + ||i(u)]|?]2 > ||i(u)|), so i is norm-decreasing. Furthermore, i
Rl

is obviously injective and linear. But then u, Il o, implies i(u,) — i(u), so i is continuous.
Now, let C denote the set of || - ||¢—Cauchy sequences in (D(t), || - ||¢), and write {uy} ~ {v,},
if limy, oo [|un — vn|l¢ = 0, whenever {uy}, {v,} € C. It can easily be verified, that ~ is an
equivalence relation on C. Consider C/ ~. Equipped with the map

{r-nf:C/wR

[wrllf = limp oo lunll, {un} €uwre€C/~

which can be shown to be a norm on C/ ~, the ordered pair (C/ ~, | - ||f) becomes a Banach
space (see e.g. [3] Th. 8.5). Put H{ := (C/ ~,| - ||I{) and define

i Hf —H

i(u*) = || - || = limpooo i(un), {un} € u* € Hf

First, ¢ is well-defined, for given another {u/,} € u*, then
liuz) = iQuo)l < fliCur,) = i(un)ll + [|i(un) — i(u")]]
= ilun, = un) || + lli(un) — i)
<l = e+ [liun) = i(u)ll,

which implies 7(u*) = || - || — limy—o0 i(ul,), so i(u*) does not depend on any representative of
u*. Second, i is linear: Given o, € C, u*,v* € Hj there are | - ||{—Cauchy sequences {uy,}
and {v,} such that {u,} € v* and {v,} € v*. Now,

ilau* + Bv*) = || — lim (i(aun + Bon)) = - || - Jim (cvi(un) + Bi(vn))
= a(II-1 = Tim i(uwa)) +B (11|l = Tim i(vn))
= ai(u*) + Gi(v*).
Third, 4 is continuous:

é(u)l

111 = Jimn_iCun)

lim ||up|l¢, since ¢ was norm-decreasing
n—oo

= lim ||i(uy,)||, by Prop. [2.1.18

IN

|lu*|lf, by definition of || - [|F.
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This shows that 4 is norm-decreasing, and by an argument similar to the one given for 4, 7 is
thus continuous.

Finally, it will be proven that i is injective, given that (iv) holds. Suppose that [V{u,} C H :
(un L0= t(u,) — 0)] and let {u,} € u* be given such that i(u*) = 0 € H. Then {u,} is
|| - |[¢—Cauchy, and by Prop. [2.1.14} {u,} is t-convergent, so Jy € H : uy, - y. Now,

= [li(u)] = 0.

Tim fiwa)l| = I = tim i(un)

Furthermore, ||i(u,) — y|| — 0, so y = 0. Therefore u, % 0. By assumption this implies that
t(u,) — 0, so now

. . . 1
[ [7 = lim fug|lc= lim [(Ret—7)(un) + [i(un)|*)z =0,
n—oo n—oo
and since || - || is a norm, we have that u* = 0*. Therefore 7 is injective. It is now proven

that 4 is a continuous injection from H; into H, which means that 7 is an embedding.
(v) = (¢) : Assume that H{ is embeddable in H. Extend t: H¢ — C, to

{Daﬂ:6/~

t (v, v*) = limp oo t(Uun, vpn), {un} €eu*€C/~, {v,} €v* €/~

Now define

7 EH|z* D)} CH
t(i(u*),i(v")) = limy— o0 H(un, vn)
and provide D(t*) with the norm |[i(
that t* extends t: Given z € D(t), the
For u,v € D(t) we get

i*(x) =x* € D{t*) and x = (i0i*)(x) = i(z*) € D(t).

t(u,v) = lim t(up, vy) = t(i(u*),i(v")) = t(u,v),

n—oo

so t* extends t.

Next, t* is closed: By Prop. [2.1.17it is enough to show that (D(t%), || - ||&) is complete. Given
a Cauchy sequence in (D(t¥), | - ||#), {n} say; then, because of the assumption, for each
Tm € {zn} C D(t*), there is a unique z¥, € D(t*) such that z,,, = i(x},). Now,

l2n = zmlle = lli(27,) — i(an) e = 25, — 2l — 0,

since {x,} C D(t*) is Cauchy. But Hj is complete, so there exists an z* € H} such that

|zt — z*||f — 0. Consider i(z*) = || - || — limp—o0 i(z) € i(D(t*)) = D(t*). Then
lim |z, —i(z")[lg = lm [[i(z;) —i(a") e = lim [[i(z), —2")|l&
— 00 n—oo n—oo

= lim |z —z*||f = 0.
n—oo

Therefore (D(t%), || - ||) is complete. Consequently, t* is closed and extends t, so t is closable.
|

Proposition 2.2.11 t is closable if and only if h = Ret is closable.
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Proof: =-: If t is closable, then there is a form s such that s D t, where s is closed. Consider
Res, which is closed by Prop. [2.1.11] Now,

(t+t*) = Ret,

N

1
Res = 5(5 +5%) D

so Ret is closable.

<: Assume that Ret is closable and that w, 0. Then by Cor. U Ret . Since

Ret was assumed to be closable, (Ret)(u,) — 0 by Prop. [2.2.10, and by Prop. [2.0.24
|(Im t) (un)| < (tanB)(Ret — v)(u,) = (tand)(Ret)(u,) — y(tan 0)||u,||?, so |(Im t)(u,)| — 0,
and now

[t(un)* = [(Re t) (un)[* + | (T £) (un)[* — 0.
Therefore t(uy,) — 0. By Prop. [2.2.10] t is closable.

Proposition 2.2.12 t is closable if and only if t+ « is closable for all o € C.

Proof: <«: Tautology.

=: Assume that t is closable, that € C and that u, —% 0. By Cor. up = 0.
Now, (t+ a)(un) = t(u,) + alju,|/?, and since u, £ 0, then ||un|| — 0; also t is closable by
assumption, so Prop. [2.2.10] gives that t(u,) — 0. Then (t+ «)(u,) — 0. By Prop. [2.2.10]
t 4+ « is closable. [ |

Proposition 2.2.13 A closable sectorial form t with domain H is bounded.

Proof: Since H = D(t) C D(t), which implies that D(t) = D(t), so t = t, the form t is closed
by Prop. [2.2.9. By Prop. it can be assumed without loss of generality that a vertex
~v = 0. Since D(t) = H, then |Ju|l¢ > [Ju|| for all w € H. Consider now T : H¢ — H given by
Tu = u, u € Hy. Then ||[Tu|| = ||u|| < ||ull¢, and assuming that v # 0 we get:

T
|T|| ;== sup IT] < sup 1=1.
wero\oy ulle ™ weraqoy

The operator T is therefore bounded. Its domain is H, which is closed, so therefore T is
closed. But then T~ is also closed. Since D(T~!) = ‘H the closed graph theorem implies that
T~ is bounded. Now, for some M > 0,

lulle = | T ull¢ < M||ul|, forall u € H.
Now, since M~ ||ul|¢ < ||ul| < |Jul|t, we see that the norms || - || and || - ||¢ are equivalent. Now,
b(u) = (Ret)(u) < [Jullf < M?[|ul?.
Now, Prop. (2'7,') gives that

[t(u, 0)| < (1+ tan )h(u)2h(v)

=

< (1 + tan ) M>lull||],

so t is bounded. [ |
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Definition 2.2.14 Let t be a closed sectorial form. A linear subspace D' of D(t) is called a
form-core of t (or simply a core of D(t)) if the closure of the restriction of t to D' is equal to
t, i.e. if

tp = t.

Proposition 2.2.15 Let t be a closed sectorial form. For a subspace D' C D(t) we have:
[D' is a core of {] if and only if [D’ D Hy],

where the bar denotes closure in the topology induced by || - ||

Proof: Let t be a closed sectorial form, and D’ a subspace of D(t).

=: Assume that ?D// =, and that u € H¢. In particular:
— o
D(yp) = {ueH | Hu.} CD sy 5 u} = D).

t s
Now, FH{u,} C D : u, [t u, and then also u,, 4 w. But t was closed by assumption, so it
is also closable. By Prop. [2.1.15 we have that ||u, — u|¢ — 0, so u = || - ||¢ — limp— 00 Up, OF
u € D'. Therefore: D' O Hy.

«: Assume that D' D Hy. Given u € D(t), H{un} € D' : |Jun, — ullf — 0 (by assumption).
Since t is closed, t is closable, and u € D(t), so Prop. [2.1.15| gives that u, 4 w. And since

tpr

{un} € D' we get u, B u. So now u € D(ﬂ;). Therefore D(t) C D(ﬂ;). Now, given

__ tp
u € D(tpr), Hun} €D : uy B . Then u, —> u, and t is closed so u € D(t). Therefore

D(t/ﬁ)//) C D(t). Consequently D(t/‘;) = D(t). Now,

— tpr tpr
. D D
tp(u,v) = lim tp(up,v,), for some u, — u, v, — v
n—oo
. . t t
= lim t(un,vy,), since u, — u, v, — v
n—oo
= t(u,v).
Consequently: tjpr = t. ]

The next proposition is included for completeness. No reference will be made to it in the
future.

Proposition 2.2.16 Let t' and t’ be two sectorial forms such that ¥ C . Let Hy and He
be the associated inner product spaces.

(i) If t" is closed, then:

t' is closed <= Hy is a closed subspace of Hy:.

(i1) If t" is closable, then:

t =t < Hy is dense in Hyr.
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Proof: Assume that t' and t” are sectorial with vertices vy and ~yy respectively, and that
t' Ct’. Put v := ¢ < qy; then v is a vertex of both t' and t”.

Ad (7): <: Assume that Hy is a closed subspace of Hys, and that {u,} is a Cauchy sequence
n (D), - |l¢)- Then {u,} is also a Cauchy sequence in (D(t"), || - ||¢), which is complete,
sou =g —limy—oo un € Hyr. Now, u is an accumulation point of Hy, which is closed by
assumption, so u € Hy. Furthermore: t' C t” and {u,} C Hy, so u = || - [|¢r — limy— 00 Uy, =
| - |l¢ — limp—co un. Therefore Hy is complete, hence ' is closed by Prop. 2.1.17

=: Assume that t and t” are closed. In particular Hy is complete by Prop. Given

u € Hy such that u is an accumulation point of Hy in the norm || - ||¢r. Then I{u,} C Hy
such that u = || - ||¢» — lim; 00 upn. We want to show that u € Hy. Now,
l[tn — um”%” = Ret’ =) (un — um) + [lun — un|?
= (Ret' —)(un — um) + lun — um|?
= |t — uml3. (2.17)
Since u = || - ||¢r — limp—o0 Up, then ||uy, — um||¢r — 0, and then by (2.17), ||up — um|l¢ — 0
as well. The sequence {u,} is thus seen to be || - ||¢—Cauchy, and by completeness of Hy,
we have that 3z € Hy : = = || - |l¢ — limp—ootty. But ¢ C /) so || - |l¢ — limy—oo up =

Il - ler — limy— 00 un, = u, and then we have x = u. Consequently: u € Hy, so Hy is a closed
subspace of Hyr.

Ad (ii): =: Assume that ¥ = /. Given u € D(t'), then also u € D(f’) = DY), so
Hun} € D) : uy, AR u, and then wu, Y . Since ' is closable by assumption, and also
u € D(t"), Prop. [2.1.15| applies and we get that ||u, — u|l¢» — 0. Consequently: Hy is dense
in Ht//.

<: Assume that Hy is dense in Hys, and assume without loss of generality that v # 0. Let
u € D(t") and € > 0 be given. Then Hu,} C D) : uy, Y, u; this means that

dN(e) € NVm,n > N(e) :

1
|un, — ul| < min {;, mﬁ COSH} A (= um)| < %cos@. (2.18)
Now, Hy is dense in Hyr, so
Vu, € D) Fu, € D) ¢ |Jvn — unl|? < €5 + €3 < €2,
or explicitly:
Ret” =) (vp —up) <8 A |vn —un|® < €3 (2.19)
Put € = min{%, S cosf} and €3 = min{%, ﬁﬁ}; note that with these choices of € and €3,
we have €7 + €3 < %—F%:% < €. Now,
(Ret” — ) (vn — up) < % cos . (2.20)
Whenever m,n > N (e) we have
1
i = < = P+ = il 2l = = ] < 47 cos
1
= = coso. (2.21)

36 ||
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Furthermore Prop. [2.0.25 gives:

Ret” —9)(un —um) < |(t" )(u = )| < | (= )|+ ] [[un — |
< S L coso
S 36 ¥ 36] | cos
= T;COS@. (2.22)

The triangle inequality for non-negative forms together with the estimates (2.20]) and ([2.22)
now gives the following when m,n > N(e):

(Re ¢ — ¥) (v, — Um)l
(Ret” — ) (v — un)? + (Ret’ — 7)(up — um)? + (Ret” =) (um — vpn)?

€
\/cosﬁ—i— \/18 cos 0 + \/COSH
= 1/§COS0 (2.23)

Since 4 /ﬁlfﬂ cosf < ¢, /2%, one obtains by using (2.19) and (2.18) the following for m,n >
N(e):

IN

A

[on = omll < lon = unll + [lun = ull + lu = wml| + [[um = vl

\/2? \/2? \/QIV\ \/QWI
\/J (2.24)

Once again Prop. [2.0.25[and (2.23) yields

A

[(¢" =) (vn, — vm)| < (secO)(Ret” — ) (vy, — vm) < (sech) - %cos& = % (2.25)
Now, for m,n > N(e) we have by (2.24) and (2.25|) that
’t/(vn —um)| = |t//(vn —um)| < |(t,/ =) (vn —vm)| + [V][lvn — UmH2
€ €
< -+ 1ls=
A |2I’V!

= €.

Whenever m,n > N(€) we also have by (2.18)) and (2.19) that

€ €
o =l < e — il + ) < & + & =

It is now proven that I{v,} C D(t') : v, AR u, which implies by definition that u € D( .

Therefore D(t”) C D(t'). The inclusion D(¥') C D(t') is obvious, so we have that D(¥) =

D(t"). Now,

> . ¢ ¢
t'(u,v) = nh—>n;o ' (up,vy), for some u, — u, v, — v
. " t// t//
= lim t"(up,vy), since up, — u, v, — v
n—oo
= t'(u,v).

Consequently: t =t [ ]
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Definition 2.2.17 An operator T on H is said to be form-closable, if the form t defined by
t(u,v) = (Tulv), D(t)=D(T)

1s closable.

Definition 2.2.18 An operator T on H is said to be sectorial, if its numerical range
O(T) = {(Tulu) € C | w e D(T), [lull = 1},

is contained in the sector {¢ € C | [Arg(¢ — )| < 0}, for some v € R and some 0 € [0, 5.
Proposition 2.2.19 A sectorial operator T is form-closable.

Proof: Assume without loss of generality that v = 0. Define t as in Def. and assume
that u, — 0. Prop. 2.0.24((9ii) now gives

[t(un)| < [t(un, un — um)| + [H(un, um)|
< (1+tan®)(Ret)(un)? (Ret)(un — tm)

N

+ [(Tunlum)|. (2.26)

Since u, — 0, we have t(u, — up) — 0, for m,n — oo, in particular: (Ret)(up — ) — 0,
for m,n — oco. Now,

(Ret)(up, — um) = (Ret)(u,) + (Ret)(un, —tm) + (Ret)(—um, un) + (Ret)(un,)
= (Ret)(up) + (Ret)(—um, upn) + (Ret)(—um, un) + (Re t) (um)
= (Ret)(un) + 2Re[(Ret)(—um, un)] + (Ret)(upn,)

and since all three terms are > 0, then (Ret)(u,) — 0, in particular {(Ret)(uy)} is bounded.

From we get that
[t(un)| < €+ [(Tun|um)| < €+ [ Tun|[[[uml],
which implies that
()| = lim_ [tun)] < €+ [Tun| i ]| = e,

so t(u,) — 0. By Prop [2.2.10] t is closable. [ ]

Since every symmetric operator bounded from below is sectorial, the following is an immediate
consequence of Prop. [2.2.19

Corollary 2.2.20 A symmetric operator bounded from below is form-closable.

Proposition 2.2.21 If T is form-closable, then

t(u,v) = (Tulv), ueD(T), veD®H).
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Proof: Assume that t is form-closable, then the form t given by
t(u,v) = (Tulv), wu,ve D) =D(T)

is closable by Def. [2.2.17] so t exists. Now,

t(u, v) = limy, oo t(tn,vy,) for some u, A U, Up Lo

{D(I) ={ueH|Hun} SDH) : up > u}

If u € D(T) = D(t), put u, = u, for all n € N. Then for all v € D(¥),

t(u,v) = lim t(u,v,) = lim (Tulvy,), (2.27)
n—oo n—oo
for some {v,, } C D(t) for which vy, -4 v. Since v, —> v, we also have that v = |- 1] = limp— o0 Un;

furthermore, (T'u| - ) is continuous by Cauchy-Schwarz’ inequality, so this together with ([2.27))
gives that

W, 0) = (Tu | |-]| - lim v,) = (Tulo).



Chapter 3

Representation of forms

The primary goal of this chapter is to state and prove what is called the first representation
theorem (Th. 3.0.31). It is the main ingredient in the construction of The Friedrichs extension
of a sectorial operator.

For bounded forms there is an easier analogue (Prop. [3.0.22)), which will be used in the proof
of Th. B.0.31

Proposition 3.0.22 (The representation theorem for bounded forms) LetH be a Hilbert
space, and t : H x H — C a bounded sesquilinear form on H. Then there exists an operator
S € B(H) such that

Vu,v € H : t(u,v) = (u|Sv).

In addition: ||S|| = ||t||.

Proof: By assumption, the form t is bounded, so there is a constant M > 0 such that
[t(u,v)] < M|ull||v] for all u,v € H. Fix v € H; then the map u +— t(u,v) is a bounded
linear functional on H with norm < ||t||||v]|. By the representation theorem of Riesz-Frechet,
there is a unique Sv € H such that t(u,v) = (u|Sv) for all u € H. Also from Riesz-Frechet:
[ 0) ]| = [[Svll, so

1Sl < [[¢][[[v]l- (3.1)
Now, Sv depends linearly on v:
Additivity:
For all u € 'H we have
(ulS(v1 +v2)) = tu,vy +v2) = t(u,v1) + t(u,vy) = (u|Sv1) + (u|Sve)

= (u|Sv1 + Sva),

which implies that S(vq 4+ v2) = Sv1 + Sve.
Homogeneity:
For all u € H and o € C we have
(u|S(av)) = Hu,aw)=at(u,v) =a(u|Sv) =
(ulasv),
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which implies that S(av) = aSv. So S is linear. By assumption t is bounded, and then
It < oo by Prop. [2.0.13] Then by (3.1)), S is bounded. Therefore S € B(H), and ||S|| < ||¢||

by (3.1]). Now,
[t(u, v)| = [(u|Sv)| < [[ull|Sv]| < ull[[S]v]],

so [[t]] < [|S||. Consequently: ||S|| = ||t]|- [

Corollary 3.0.23 Let 'H be a Hilbert space, and t : H x H — C a bounded sesquilinear form
on H. Then there exists an operator T' € B(H) such that

Vu,v € H: t(u,v) = (Tulv).

In addition: ||T|| = |||

Proof: The map S +— S* is an involution on B(H), so in particular S = S**. Therefore by
Prop. [3.0.22

Yu,v € H: t(u,v) = (u|Sv) = (u|S™v) = (S*ulv) = (Tulv),

where T := S*. Now, |T|| = ||S*|| = ||S|| = ||t||, where the last equality comes from Prop.
19.0.22) ]

In analogy with t-convergence for forms, a corresponding notion for operators is defined in the
following.

Definition 3.0.24 (T-convergence) Let T' be an operator on H. A sequence {u,} C H is
said to be T-convergent, if

(1) {un} € D(T)
(i) {un} and {Tu,} are Cauchy sequences.
If in addition to (i) and (i), {un} also fulfills
(i1i) u, — u € H,
then the sequence {uy} is said to T-converge to u, and this is denoted by uy, L.
Definition 3.0.25 (Closed operator) An operator T on H is said to be closed, if
Up, Lu implies uw € D(T), Tu= lim Tu,,

n—oo

where the limit is in the norm || - | on H.

Proposition 3.0.26 Let T be a closed operator on 'H, and A a bounded operator on H such
that D(T) C D(A). Then T + AA is closed, for any A € C.
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Proof: Assume that T is closed, A is bounded, D(T') C D(A), that A € C and that w, 2ty

Then {un} C D(T + ANA), ||up — ul| — 0 and {(T + AA)u,} is Cauchy, i.e. |[(T'+ AA)u, —
(T + AA)up|| — 0 for m,n — oco. It must be shown that u € D(T + AA) and (T + A\A)u =
limy, o0 (T + AA)uy,.

Now,
[Tun = Tum| = (T + AA) = AA) (un — um)|
< T+ AA) (un — )| + [[(AA) (un — )|
< T+ AA) (un = ) [| + [[AA][[ . — v |
= T+ AA)un — (T + AA)um|| + [[AA|[[un — v |
— 0,

as m,n — 00, so {Tu,} is also Cauchy. Since D(T) C D(A), then D(T + XNA) = D(T) N
D(AA) =D(T)ND(A) = D(T), so {un} C D(T). Therefore u, ALy, implies that u, — w.
And T was closed by assumption, so v € D(T'). And then u € D(T + A\A).

Now,

(T + AA)un — (T'+ AA)ul| (T + AA) (un — w)|| = [|T (un — ) + (AA) (un — u)||
1T (un = w)l[ + [[(AA) (un — w)|
[ Tup — Tull + [[AA][[[un — u

0,

VANVAN

!

since T is closed. Consequently: (T'+ AA)u = limy, oo (T + AA)uy, so T + AA is closed. W

Definition 3.0.27 An operator T on H is said to be accretive, if the numerical range of T,
O(T), is contained in the right half-plane, i.e. if:

O(T)C{zeC| Rez>0}.

Definition 3.0.28 An operator T' on 'H is said to be m-accretive, if it is accretive and
(T—-¢) ' eBMH), (T-07<®ReQ)™, forall ¢ € C with Re( > 0.

An operator T is said to be quasi-m-accretive, if T + a is m-accretive for some o € C.

Proposition 3.0.29 An me-accretive operator T is maximal accretive in the sense that it
admits no proper accretive extensions.

Proof: Suppose that T} is an accretive extension of 7. Then (T} — ¢)~! is an extension of

(T — ¢)~! for Re¢ > 0, and by definition of an m-accretive operator, (T — ¢)~! has domain
‘H. Therefore Ty =T [ |

Definition 3.0.30 An operator T on H is said to be m-sectorial, if T is quasi-m-accretive
and sectorial.
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Theorem 3.0.31 (The first representation theorem) Let t be a densely defined, closed,
sectorial sesquilinear form on H. Then there exists an m-sectorial operator T on H such that

(i) D(T) € D(t) and
Yu € D(T) Yv € D) : t(u,v) = (Tulv).

(ii) D(T) is a core of t.
(iii) If
Vu € D(t) Jw € H Yeore, D, of h Yv € D : t(u,v) = (w|v),
then w € D(T) and Tu = w.

Remarks: (1) The operator T associated to t is uniquely determined. This will be proved
later (Cor. [3.0.35)). (2) Statement (iii) provides a sufficient condition for having membership
of the domain of the associated operator. This will become relevant later, when the exact
domain of the Hamiltonian of the d-interaction will be determined.

Proof: It may be assumed without loss of generality that t has a vertex v = 0, so that
h=Ret>0.

Ad (%): Let H¢ be the associated inner product space. By Prop. [2.1.17, H, is a Hilbert
space, since t is closed by assumption. Prop. [2.1.16] shows that t is bounded on H. And the
estimates

[(t+ D) (u, )] = [t(u,v) + (u|v)] < [tH(u, v)] + [(u]v)]
< Mjulldlolle+ l[ulllvll < Mllulldivllc+ ulldioll
(14 M)|lulldlv]le

show that t+ 1 is bounded on H¢ as well. Put t; = t+ 1. By Cor. |3.0.23| there is an operator
B € B(Hy) such that
t1(u,v) = (Bulv)y, u,v € Hy.

Since

lull =)+ [lul* = (h + 1)(u) = (Re ts)(u) = Re(Bulu),
< [(Bulu)] < [|Bullfulle

we have: |Jull¢ < ||Bul|¢ (for u = 0 there is nothing to prove). Now, Bu = 0 = ||Bul =
0 = Jlullf = 0 = u = 0, so B is injective. Therefore B has an inverse on R(B), and
for u € D(B™Y) = R(B) we get: |B~ull¢ < ||B(B~ ull¢ = ||ully, so B~! is bounded on
D(B™') = R(B) C H¢. So B~!: R(B) — D(B) = Hy is a homeomorphism. This together
with the fact that H is closed implies that R(B) = D(B~!) is closed in H;. In fact D(B~!) =
Hyg; in order to show this, take u € Hy, such that u Ly D(B~!). Then (z|u)¢ = 0 for all
z € D(B™!) = R(B), in particular: (ulu)¢ = ||ul|? = Re(Bu|u)¢ = 0, so u = 0, since || - || is
a norm. This shows that D(B~1) is dense in Hy; but D(B~1) was closed, so D(B~!) = H; .
Therefore B~! € B(H,). Furthermore: ||B~ ul|¢ < ||ul|¢ shows that ||[B~!|| < 1.

Fix uw € H, and consider the conjugate linear functional [, given by l,(v) = (u|v), v € Hq.
Since |l,(v)| = |(u]v)] < [Julll|v]] < ||lull||lv|l¢, we see that [, is a bounded conjugate linear
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functional on H¢ with bound < |ju||. The representation theorem of Riesz-Frechet implies
that 3’ € H Yo € He: ly(v) = (W' |v)g, where [|u/||¢ < ||ul], since

@ _ o O] )

[u[l¢=sup < sup
vernfoy Ve werigoy lvlle ™ vernioy IVl

= [Jull-

Define the operator A by Au = B~14/. A is a linear operator with D(A) = H and R(A) C
R(B~1) = D(B) = Hy. Since ||Aul¢ = |B~ ||« < |B7||||v'||¢ < ||u||, A is bounded on H, so
A € B(H). By the definition of A we get (u|v) = l,(v) = (¢|v)¢ = (BAu|v)¢ = t1(Au,v) =
t(Au,v) + (Aulv). This implies that t(Au,v) = (u|v) — (Aulv) = (u — Aulv), u € H, v € Hy.
Now, Au = 0 = (ulv) = t(Au|v) + (Au|v) = 0, for all v € Hy, which implies that u = 0,
since Hy = D(t) is dense in H by assumption. Therefore A is injective, so it has an inverse
A1 R(A) — D(A). Put w = Au; then u = A~1w and denoting by I the identity operator
on R(A) we get

t(w,v) = (A 'w — AA w|v) = (A7 = Dwlv), we R(A), v e Hy
Define T = A~ — I, D(T) =D(A ' —I) =D(AY)ND(I) = R(A) NR(A) = R(A); then
t(w,v) = (Twlv), w € R(A)=D(T) C H¢=D(t), v € H¢=D(t).

We know that A € B(H), so it is also closed; then A~! is also closed; furthermore I is bounded
and D(A™1) = R(A) = D(I),so T = A~! — I is closed by Prop. [3.0.26 Since t(u) = (Tu|u),
then O(T) = O(t), and t was sectorial by assumption, so T' is also sectorial. In addition:
R(T +1) =R(A™!) =D(A) = H, so T is m-sectorial.

This proves (i).

Ad (i1): By Prop. [2.2.15[it is enough to show that D(T') is dense in H;. Since D(T) = R(A)
and B : H{ — H is a homeomorphism, and denseness is preserved under homeomorphisms,
then it suffices to show that B(R(A)) is dense in H;. In the meantime, we have

D(BA) = A™'D(B) = {x € D(A) = H | Az € D(B)} = D(A), since R(A) C H = D(B),
and then
R(BA) = (BA)D(BA) = (BA)D(A) = B(AD(A)) = B(R(A)).
Assume now, that v € Hy fulfills that (BAu|v); = 0 for all u € D(BA) = D(A) = H; then

(ulv) = ly(v) = (V'|v)¢ = (BAu,v){ = 0,

for all u € H, so v = 0, which implies that R(BA) = B(R(A)) is dense in H.

This proves (7).

Ad (#i1): Consider now the adjoint form t*. By assumption, the form t is closed, sectorial with
vertex zero, and densely defined. By definition of t*, D(t) = D(t*), so t* is also densely defined;
by Prop. [2.0.23] t* is also sectorial with vertex zero; and by Prop. [2.1.11] t* is also closed.

Therefore there is an operator 7" associated to t* (by (i)). Now, for any v € D(T') C D(t*)
and u € D(t*) = D(t) we get

t* (u,v) = (T v|u) = (v, u) = (T vfu) = t(u,v) = (u|T v).
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Letting u € D(T) C D(t) and v € D(T") € D(t*) = D(t) we get from above and from () that
(Tulv) = (u|T'v), weDT), veDT).

This implies that T CT* Furthermore, both T  and T* are m-sectorial, so in particular they
are m~accretive by Def. [3.0.30l By Prop. [3.0.29| they are maximal accretive, and therefore
T =T*. Then (T')* = T** = T, where the last equality is true because T is close

Fix v € D(t) and assume that there is a w € H such that for any core D of t one has that
Vo € D :t(u,v) = (wv).

By Prop. [2.1.16 t is continuous on H¢ = D(t). Therefore, if v € D(t) then by Prop. [2.2.15

there is a {v,} C D such that v = || - ||¢ — limp— 00 U, SO NOW
t(u,v) = tu,|-|l¢— lim v,) = lim t(u,v,) = lim (w|v,) = (w||| - || = lim v,)
n—oo n—oo n—oo n—oo

= (wlv), veD{).
In particular, if v € D(T"), then
(u|T"v) = t(u,v) = (w|v), for all v € D(t).

This implies that

(u|T'v) = (wv), or equivalently: (T v|u) = (v|w).
By definition of (T")*, u € D((T")*) and w = (T")*u. But it was proved earlier that (T")* = T,
sou € D(T) and Tu = w.
This proves (iii). [
Corollary 3.0.32 Let ty be a form defined by: D(ty) = D(T), to(u,v) = (Tu|v), where

u,v € D(tg) and T is the operator that comes from Th. |3.0.31. Then t = t,.

Proof: Since D(t) 2 D(T) = D(ty), and to(u,v) = (T'u|v) = t(u,v) on D(ty), then to = tip(¢y)-
And D(ty) = D(T'), so tg = tip(ry. Also, D(T) is a core of t, so t = %\(_T/) = tg. [ |

Corollary 3.0.33 The numerical range of T is a dense subset of the numerical range of t,
i.e.: ©(T) C O(t) and O(T) D O(1).

Proof: It holds that ©(T) = O(ty) C O(ty) = O(t), where the inclusion comes from Prop.
and the last equality from Cor. 3.0.32] This shows that ©(T) C O(t). By Prop. 2.2.6
O(ty) 2 O(tp), so now O(T') = O(ty) 2 O(ty) = O(¢). ]

Corollary 3.0.34 If S is an operator such that D(S) C D(t), and such that t(u,v) = (Su|v)
for all w € D(S), and all v belonging to a core of t, then S C T.

T is m-sectorial with vertex v = 0 by (i), so it is actually m-accretive, and m-accretive operators are
closed. See [8], page 201.
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Proof: By (iii) of Th. [3.0.31}, w € D(T), and Su =Twu, so S CT. [

Corollary 3.0.35 The m-sectorial operator T in Th. [5.0.31 is uniquely determined by the
condition (7).

Proof: If S, T are operators fulfilling Th. [3.0.3T} they also fulfill Cor. [3.0.34 and then S C T
and T C S. Consequently: S =1T. |

Notation 3.0.36 The operator T' constructed from t in Th. |3.0.31 will be called the (m-
sectorial) operator associated with t. It will be denoted by Ty.

Proposition 3.0.37 If T =Ty, then T* = T.

Proof: In the proof of Th. |3.0.31 T’ is defined to be T, and it is proven there that T = T,
so T = Tp. [ |

Proposition 3.0.38 If b is a densely defined, symmetric, closed sesquilinear form on H
bounded from below, then Ty is self-adjoint and bounded from below. Furthermore: vy = yr .

Proof: If  is symmetric, then h = h*, whence Ty = Ty = Té“ , where the last equality comes

from Prop. [3.0.37, From Cor. [3.0.33; ©(Ty) € ©(h), so v < v7, - In addition, ©(Ty) 2 ©(h),
so if vy < 71, then put € := %('yTb — ). Now,

1 1
<t e=v+50m —m) =501 +m) <om, S

for all © € ©(Ty). This implies that |yy — x| > |y5 — (75 + €)| = € for all x € O(T}); hence

O(Ty) 2 ©(h), which is a contradiction. Consequently: vy = 75 - |

Proposition 3.0.39 The map t — T} is a bijective correspondence between the set of densely
defined, closed, sectorial sesquilinear forms on H, and the set of m-sectorial operators on H.
In addition: t is bounded if and only if Ty is bounded; and t is symmetric if and only if T is
self-adjoint.

Proof: The map t— Ty is injective: Let s,t be densely defined, closed, sectorial sesquilinear
forms on H. Assume that T; = T;. Then s(u,v) = (Tsulv) = (Tw|v) = t(u,v) for all
u € u € D(Ts) =D(T) and all v € D(s) = D(T,) = D(1y). By Cor. t =5, and since s
is closed, then s = § by Prop. 2.2.9] Then s = t. Hence t — T is injective.

The map t — Ty is surjective: Given an m-sectorial operator 7' on H. Define as in Cor. [3.0.32]
to(u,v) = (Tulv), D(ty) = D(T). Then tg is densely defined and sectorial. By Prop. [2.2.19] it
is closable. Put t = ty, and define T} according to Th. By Prop. 3.0.34|, T¢ DT, and
since both T" and T} are m-sectorial, T' = T.

t is bounded if and only if Ty is bounded: Assume that T is bounded, then

[t(u, v)| = [(Tulv)| < [|Tulll[oll < [[T[[{l]]v],
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so t is bounded.

Assume that t is bounded. Then there exists a constant C' > 0 such that for any v € D(T)
we have

|, v)| = [(Tu|v)| < Clluff[o]-

Now,

T
[Tl = sup 1)

< Clull,
veH\{0} [lv]l

so T is bounded.

t is symmetric if and only if Ty is self-adjoint: Assume that t is symmetric, then T} is self-
adjoint by Prop. [3.0.38

Assume that Tt is self-adjoint, then by Prop. [3.0.37 Ty = T} = T, and since the map ¢ — T
is injective, then t = t*, so t is symmetric. ]

Proposition 3.0.40 Leth be a densely defined, closed, symmetric, lower bounded sesquilinear
form on H. Then

D(Ty) = {ueD(bh) | 3C >0 Vv € D(h) : [h(u, v)] < Cljo]]}-
Remark: The constant C' from above is in general dependent on u, but never on v.
Proof: C: Assume that u € D(Ty). Then h(u,v) = (Tyulv), so
[9(u, )| = |(Tyulv)| < [ Tyulll[v]] = Cllv]].

Therefore, D(Ty) C {u € D(h) | 3C > 0 Vv € D(h) : |h(u,v)| < C|jv]|}.

D: Assume that u € D(h) such that 3C > 0 Vv € D(h) : |h(u,v)| < Cljv||. Then by definition,
the linear functional h(-,u) : (D(h), ||-]]) — C is bounded; by [3] Th. 11.4, h(-, u) is continuous.
It therefore extends uniquely by continuity to the continuous functional

{h(-,u) H—C

h(v,u) = limy, o0 H(vn,u), where {v,} CD(h), limy_oo||vn —v|| =0
By the representation theorem of Riesz-Frechet,
Jw e H Vv eH:h(v,u) = (vw).
This implies in particular, that
Jw € H Vv € D(h) : h*(u,v) = h(u,v) = (w|v),
which again implies that
Jw € H Vcore, D,of h Vv € D : h(u,v) = (w|v).

Now, by (#ii) of Th. u € D(Ty) and Tyu = w. In particular: u € D(Ty). Therefore,
D(Ty) 2 {u e D(h) | 3C =0 Vv € D(h) : |h(u, v)| < Cllv]}- u



Chapter 4

The Friedrichs extension

In this chapter, the Friedrichs extension is defined, and some properties of it will be derived.
The Friedrichs extension is a canonical m-sectorial extension of a given sectorial operator,
and it has various convenient properties. It can be thought of as an extension by closure in a
certain sense, and as such, it is the minimal extension of all possible extensions.

In the particular case of extending a symmetric semibounded operator, the Friedrichs extension
is self-adjoint. Furthermore, the lower/upper bound is preserved. In the general case of
extending sectorial operators, the vertex is preserved.

The process of the extension depends heavily on the first representation theorem (Th. [3.0.31))

Definition 4.0.41 (The Friedrichs extension) Let T' be a densely defined sectorial oper-
ator on 'H, and define the form t on 'H by: t(u,v) = (Tulv), D(t) = D(T). The Friedrichs
extension of T, denoted by Tr, is defined to be the m-sectorial operator associated to t, where

t is the closure of t, i.e.:
Tr =13

Proposition 4.0.42 The Friedrichs extension of T is a well-defined extension of T.

Proof: First, tis closable by Prop. 2.2.19] so by Prop. [3.0.39] there is a unique 75 associated
to t.
Second, D(T') = D(t) is a core of t, so by Cor. [3.0.34) T, D T. [

Proposition 4.0.43 If T is a densely defined, sectorial operator, then
(i) Tp =T, if T is m-sectorial.
(i) The Friedrichs extension of the Friedrichs extension of T is T itself, i.e.:

(TF)F =Tp.

Proof: Let T be a densely defined, sectorial operator on H.

Ad (%): An m-sectorial operator has no proper sectorial extensions, so one must have: Tp = T..
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Ad (¢¢): If T is a densely defined sectorial operator, then the Friedrichs extension T of T' is
m-sectorial by Th. [3.0.31] so by the argument in (i) one has: (Tr)r = TF. [

Proposition 4.0.44 Among all m-sectorial extensions of T' of T, the Friedrichs extension
Tr has the smallest form-domain (i.e. the domain of the associated form t is contained in the
domain of the form associated with any other T").

Proof: Define t' by t'(u,v) = (I/u,v), DY) = D(T). Then t is associated with T". Since
T DT, we have ¥ D t, whence ¢ D t. Consequently: D(t') D D(b). [ ]

Proposition 4.0.45 The Friedrichs extension of T is the only m-sectorial extension of T
with domain contained in D(t).

Proof: Let 7' be any m-sectorial extension of T with D(T/) C D(t). We need to show
that 7" = Tp. Let ¢ be defined as in Prop. Then ¥ (u,v) = (T'u,v) = t(u,v),
DY) =D(T') C D(t). Since T' = T3, ' D tand D(T") € D({), then T' C Tp by Cor. .
Both 7" and Tr are m-sectorial, so T = TE. [ |
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Chapter 5

Hamiltonian of the d-interaction

Consider the form h on L?(R) defined by:

{D(h) =H'(R) = {f € L*(R)|f" € L*(R)} (5.1)

h(f,9) = [ f'(2)g'(x)dz + Af(0)g(0), A <0

are understood to be weak derivatives.

Here the primes ”"”

Proposition 5.0.46 The form defined in (5.1)) is sesquilinear, densely defined, symmetric
and bounded from below.

Proof: Sesquilinear: Linearity in the first variable follows from linearity of the Lebesque
integral, and the distributive law of real numbers; conjugate linearity in the second variable
follows in the same manner.

Densely defined: H'(R) is dense in L*(R).
Symmetric: For any f € D(h) one has: bh(f) = b(f, f) = [z |/ (z)]*dz + A|f(0)|* € R. By
Prop. b is symmetric.

Bounded from below: The numerical range of h is ©(h) = {h(f) | f € D(h), || fllr2m) = 1}, so
assuming that a given f € D(h) has || f[| 2®r) = 1, one gets

h(f) = /R |f/ () Pda + A FO)? = [IF]3 + ALF(0) . (5.2)
From Sobolevs embedding theorem:

SO < 1% < CllflFam = C2ULIE+ 113 = C2* A+ 1£15)

and since A < 0, then
AFO)F = AC?(1+ [1£13),

which together with (5.2) gives
() > 1113+ AC2(L+ ([ £13) = AC* + (1 + AC?)| f']15.

If A\ > —C~2, then 1+ AC? > 0, which implies that (1 4+ AC2)||f’||2 > 0; hence h(f) > AC?.
Therefore, b is lower bounded with A\C? as a lower bound. |
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In order to be able to use Th. [3.0.39] it must be shown that § is closed.

Proposition 5.0.47 The form b defined in (5.1) is closed.

Proof: By Prop. [2.1.11] § is closed if and only if h — AC? is closed. First it is shown that
_ 2
h — A\C? is closable. Assume that f, h2AG 0, i.e.:

e neN: f, € L2(R) and f, € L%(R)

o limy oo [ |fn(2)|?dz =0

lim (h - ACQ)(fn - fm)

=t {10~ @Rz 4 Al = £ OF = AC?1F, ~ ol
=t [ 1) = F@)Pds 4 m [5,0) = ()

— A%l | full?

= i [f = flP A m [£2(0) ~ ()P = AC? Tim (|~ fil?

= 0.7 | |
We have the following estimates:

1£0(0) = fn ()1 < [l fn = Fnll3e < C*(Ifn = Fnll® + I f = fll?),
which implies that
Al fn(0) = fm(0)F = AC* (Il fo = fonll* + 115 = £rul®). (5:3)

Now, using we have that

Jlim (0= AC?)(fu ~ f)

> lim {|lf = full® = AC? N fn = funl* + ACP (U fn = fonl + 117 = Fim]*)}

m,n— 00

=l (L ACY)|f = fll®

Assuming that A > —%, then 1+ AC? > 0; so since limyy, 00 (h — AC?)(fr, — fin) = 0, then
My o0 ||/, = f1ull = 0. Consequently, limp, noo || fn — finllir®) = 0. H'(R) is complete,
so 3f € HYR) : ||fa — fllir@) — 0. This implies that [|f, — fll2 — 0, but |[fu[l2 — 0, so
f =0 (in L*(R)). Hence ||f;|l2 — 0. Now, {f,} € H'(R) € C(R), s0 || full31 &) — 0 implies
that || fulloc — 0, and then |f,(0)] — 0. Hence,

(6 ACH)(fa) = /R @)z 4 M () — AC?| foll?
13113+ Al fn(0)* = AC?| fall3

— 0.
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Consequently, h — AC? is closable by Prop. [2.2.10f Next, it is shown that h — A\C? is closed.

By Prop. [2.2.9]it is enough to show that h — A\C2 = h — A\C?. Given f € D(h — AC?); then
v 2

3£} €D — AC?) : f "2 £, It will be shown that f € D(h — A\C2) = D(h). Now,

| fn— fll2 — 0 and (§ — AC?)(fn, — fm) — 0. As shown earlier, ||f, — f/.|l2 — 0, so

| fr = fm”Hl(R) = || fo = fmll2 + Hfrlz - f7/nH2 — 0.

H*(R) is complete, so 3g € H'(R) : || fn — gllx1 @) — 0. This implies that || f,, — gll2 + |1 £, —
Jll2 = 0, and in particular: | f, — glls — 0. But [fo — fll2 — 0,50 f = g € HI(R) =
D(h — A\C?). Therefore h — AC? is closed. By Prop. [2.1.11] b is closed. [

Now, since b is a sesquilinear, densely defined, closed, symmetric and lower bounded form on
the Hilbert space L?(R), Prop. [3.0.39| applies and there is therefore a self-adjoint operator H
on L?(R) such that

VfeD(H) Vg e Db):b(f,9) = (Hflg).

5.1 The domain of the Hamiltonian H

This section is devoted to the derivation of the exact domain of d-interaction Hamiltonian.
Let therefore H be the lower bounded self-adjoint operator associated to h, which was defined

in (5.1). Then by Prop. [3.0.40[ we have that
D(H) = {f e H'(R) | 3C > 0 Yg € H'(R) : [n(f,9)| < Clig|l}-

Lemma 5.1.1 Let f € HY(R) be a function that fulfills that f € H?*(R\{0}) and lim~ o[f’(e)—
f'(—=e)] = Af(0). Then f € D(H).

Proof: Assume that f € H!'(R) NH?(R\ {0}) satisfies the condition lime o[f'(€) — f'(—¢)]
|

Af(0). According to Prop. it is sufficient to prove that 3C > 0 Vg € HYX(R) : |h(f, g)| <
Cligllr2)- Let g € HY(R); then g, ¢ € L*(R). Using Prop. one obtains
bl = = [ F@FEd 2050
— |- [ £+ 200
R\{0}
= | F"(@)g(x)dz — Af(0)9(0) + Af(0)g(0)]
R\{0}

< "l 2y gop 91l L2 fop)

= CHQHL2(R)~
Consequently, f € D(H). |

Lemma 5.1.2 Let f € HY(R) and ¢ € C®(R) with p =1 on]— M, M[¢, o =0 on [-m,m],
0<m<M and 0 < p < 1. Then fo € H'(R).
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Proof: First, since f € H!(R) by assumption, then in particular f € L?(R). Now,
[ Ir@e@lae < swple@P [ 1@ = Cl s <.

so fo € L?(R). Next, it will be shown that D(fy) € L?(R). The quantity D(fe) will be
computed. Now, assuming that ¢» € D(R) we get:

(Fod) = /f dw—/f )z = {f, o)

= (i () = "Y) = ([, (¢¥)) = (f,¢'¥)

= —(D(f),¢v) — (f¢',¥)

= _<§0D(f))1/)>_<f90/)¢>

= —{(eD(f) + f¢'. ). (5.4)
By definition of the distributional derivative, (D(fp),%) = —(f¢,9’') for any ¢ € D(R),

so by (6.4), D(f¢) = ¢D(f) + f¢'. By definition of ¢, ¢' € D(R); also, f € H*(R), so
f, D(f) € L*(R) by definition of H*(R). Now,

oDy < supliota) /R D(f)(@)dx = O D(f) |32z < 0
and
15 ey < sup 1 @) [ 17@)Pde = ey < o

so ¢D(f), f¢' € L*(R), which implies that D(fy) = ¢D(f) + f¢' € L*(R). Consequently,
o € HY(R). |

Lemma 5.1.3 Let b be the form defined in (5.1) and H the self-adjoint operator associated
to h. Assume that f € D(H) and ¢ € C°(R) with o =1 on | — M, MI[¢, ¢ =0 on [—m,m],
0<m<M, and 0 < ¢ <1. Then fo € H*(R).

Proof: By Lemma it is enough to show that D?(f¢) € L?(R). We now compute D?(fo);
let therefore ¢ € D(R) be given; then

(D*(fe),¥) = —(D(fe),})) =—(D(f)e+ f&',¢)
= —<D(f)90ﬂ//> - <f90/7 ¢/>

By Lemma D(f¢') = D(f)¢' + f¢". Now, ¢',¢" € D(R) and f, D(f) € L*(R) since
f € HY(R). Therefore D(f¢') € L?>(R). We now get that

(D(fe), ) = —(D(f),0¥") + (D(f& )W)
= —(DN)l(ev)) +(D(f), ¢'¥) + (D(f¢), ¥)-

By definition of ¢, ¢(0) = 0, so Af(0)(¢%)(0) = 0. Using the definition of h we get that

(D2(fe), ) = =b(f,00) + (D(f),"¥) + (D(f¢), %)
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Since f € D(H) by assumption, we get from the first representation theorem, Th. |3.0.31} that

(D*(fe),¥) = —(Hf,o¥)+(D(f),¢'¥) + (D(f¢), ¥)
—(@H f, ) + (' D(f), ) + (D(f)¢' + f¢" 1)
(—oHf +20'D(f) + fo",4). (5.5)

Since (j5.5)) holds for any ¥ € D(R), we obtain:

D*(f) = —pHf +20'D(f) + f¢".

Now, ¢’,¢" € D(R); and f € HY(R), so f, D(f) € L*(R). Therefore, ' D(f), f¢" € L*(R).
Furthermore, H : D(H) — L*(R), so Hf € L?*(R). Since 0 < ¢ < 1, pHf € L*(R).
Consequently,

D*(fg) = —pHf +20'D(f) + f¢" € L*(R),
so fi € H2(R). [ ]

Proposition 5.1.4 The following biimplication holds true:
feH' (R)NH* R\ {0}) (5.6)
if and only if
Vm>0VM >m:
fFEH'R) A f"omum € L*(R) A lim / |(F" oman) (@) Pda < .
M\0 Jr
Proof: =: Assume that f € H*(R)NH2(R\ {0}) and let m > 0 and M > m be given. Then
f" € L*(R\ {0}), which implies f” € L*(R\ [-m,m]). Therefore also f”¢m mr € L*(R). Now,

| oma(z)] < |f"(x)] for all 0 < m < M and all z € R\ {0} and f"pp, m(z) — f/(x) as
M N\, 0 for all z € R\ {0}. The theorem on monotone convergence gives that

. " 2 . " 2
lim /R (" o) ()P = /R @

M0

The last integral is finite, since f” € L3R\ {0}).

«<: Assume that f € HY(R), that f"@, € L*(R) for all 0 < m < M and that the limit
limaro fg |(f"@m,n)(@)|>dz exists and is finite. The same argument as above gives

") Pdx = lim/ " o) (@) Pdr < o0o.
Loy 1@ = fin [ e

Hence f” € L*(R\ {0}). Since also f € H!(R), one concludes that f € H(R) N HZ(R \ {0}).
|

Proposition 5.1.5 Let f € H'(R) and 0 < m < M be given. Then

D2(f90m,M) = f//QOm,M + 2f/90;n,M + f(pZ@,M’
with equality in the sense of distributions.

Furthermore,
D*(fomum) € L*(R) <= f"omm € L*(R).
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Proof: Let f € H'(R), 1 € D(R) and 0 < m < M be given. Then
(DX(fmar)it) — /R (Fomar) (@) (@)dz = — /R (Fomar) (@) (z)da
- /R ('Ot + Fidly a) (@) (2)da

- /R ("t + 2F G ag + Folhan) (@) (@) de
= (f"omm +2f s + [Oman V)

Since 1) was arbitrary,

D*(fomm) = "t + 2f Gy ns + [t (5.7)
Now, ¢}, rrs s € D(R) and £, f' € L?(R), so F O Foma € L?(R). Tt is now immediate
from (5.7), that D?(fomar) € L*(R) if and only if f"¢m r € L3(R). ]

Proposition 5.1.6 Let f € D(H) and 0 < m < M be given. Then f"¢uma € L*(R) and
OmMmHf = —omuf”.

Proof: Assume that f € D(H) and 0 < m < M. Then by Lemmal5.1.3) D*(fom.m) € L*(R);
and then "o, v € L2(R) by Prop. Furthermore,

D*(fomar) = ~pmaH + 21 G ar + £l - (58)
By Prop. f"omn € L*(R) and
D*(fomar) = f"omm + 2f Orans + Fomnr- (5.9)

Equating the expressions in (5.8) and (5.9) one obtains:

ommHf =—omumf".

Lemma 5.1.7 Let f € D(H). Then f € HY(R) N H?3(R\ {0}).

Proof: Assume that f € D(H). Then by Prop. f"omm € L2R) and oy Hf =
—omm f” for all 0 <m < M. Now,

i, [ 1 eman(@)Pde = Jim [ (it )(a) o

MN0 MN\0

. 2
< m /R (Hf)(2)|2de

- / \(H f) () 2.
R

The last integral is finite, since Hf € L?(R). By Prop. feH(R)NHA(R\ {0}). W
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Proposition 5.1.8 Let f € HY(R) NH*(R\ {0}). Then

JC>0V0<e<2:|f(e)| SCA|f (=€) <C.

Proof: It will without loss of generality be proven that |f/(e)] < C for all 0 < € < 2, where
C > 0 is independent of €. Assume that f € H!(R) N H?(R\ {0}) and let 0 < € < 2; then

DZ(fQOiGéE) € L%*(R) by Prop. and Prop. . Now, Prop. gives that

F@Q=FO = [(For03) @) — (For02) (@)

- 1 [ Doy g

— | [ oy g+ 200y + 195, Maddal
R 13 1973

2
< / (01 + 20+ 0 (@)

IN

1€ 472

\/27—6\// ‘f//801€16+2f/901 1, + fo'l 16)(33)‘261%

where the Cauchy-Schwarz inequality has been used in the last inequality. The triangle in-
equality now gives:

}|f’<2> f(e)

\// (010 |2dx+\// 256}, |2da:+\//r "))

Now, gol 'y goi . =0on [¢2], so
4 4

2
7@~ fol < ﬁ\/ J

g€ 12¢€

which implies that

2
11'(2) = fi(ea)l < \/51%\// /" p1c1l2dx

2
— : " 2

2
/ / ; " 2
£ < 15@]+ \/29@)/6 7"y podn < o0,

Finally,

since the limit under the square root is finite by Prop. |
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Lemma 5.1.9 Let {p, | 0 < n < €} be a family of functions satisfying the properties de-
scribed in Lemma [B.0.13. Then

D' — lim Dy, —0_¢ + Oe.
n\.0 Peme

Proof: First, make the identification Li (R) 3 @e_ye — Ay, _, . € D'(R) and let ¢ € D(R)
be given; then, denoting by H the Heaviside function,

W
- / Geme(@)(z)dz

= _6¢ )dx + (/EM /:n) Pe—n,e(x)h(x)dw + /Eooq/;(m)dx
- /RH(—6 — z)Y(x)dx + </€+77 /:,7> Pe—ne(x)(x)dx + /RH(Q; — )p(z)d.

Write

[ vendavi@dn] = | [ Xepg@ndeptis

< sup ()| - vol([e ~ .d]). (5.10)

z€R

Now, since vol([e —n,¢]) \, 0 as 7 ™\, 0, then by (5.10), f;n Pe—n,e \, 0 as 0. Similarly,
f:€€+77 Pe—n,e \, 0 as n \, 0. Consequently,

%i{r%) Ao, 0 = /RH(—E —z)Y(x)dx + /RH(x — )Y (z)dx
= Mg+ Agi_o¥.

Since this holds for every test function ¢ € D(R), then

D= lim Ay ) = Mpieemy + Arr—o)
By [14], Th. 6.17,
/ . ’ / / _

Lemma 5.1.10 Assume that f € D(H). Then

li{%[f’(e) = (=] = Af(0).
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Proof: Assume that f € D(H), g € H'(R) and that {¢c_pe | 0 < n < €} is a family of
functions satisfying the properties described in Lemma [B.0.13] Then

/R pene@) @@z = (Penef]d)

= (D(Penef) = Peenefld)
= —(D*(e—nef) — D&y H)l9)

(—fl e =20y e+ CeneHF)+ ot f + o yelg)
= (Pene(Hf) = floe_pclg)

= [ Pene(@)(Hf)(x)g(x )dw—/wén,e(ﬂ?)f’(ﬂf)g(@dﬂf- (5.11)
R

Now, Lemma [5.1.9| gives that

lim [ o, (x)f'(x)g(z)dr = (=d-c+0)(f'9)

N\O0 Jr
= f(e)gle) = f'(=e)g(—e). (5.12)

It should be noted that the §-functional is usually defined on D(R), but can be extended to
C(R) sacrificing continuity though.

Since @e—n.e \ X]—e,efc as 7\, 0, then the monotone convergence theorem gives that the limit
limy\ o [g Pe—n,c(H f)g exists and

—€
iy [ vop @@= ([ 4 [T) Enwea 6)
7N\0 Jr
Now, (5.11)), (5.12) and (5.13) implies that

lim soe—n,s(x)f'(x)mdfﬂ

7™\0 Jr
=ty [ oy ) D@~ T [ L (o) (@lgla)da

_ </ /)Hf @)z + f'(~e)g(—) — f(€)9(0).

Since, Xj—e,-(Hf)g / (Hf)g € LY(R) as € \, 0, then by the monotone convergence theorem,
limeo [p X]—e,elc(H f)g exists and

ti iy [ oot = s ([ 4 [7) @@t
— [ D@
R
= (Hflg).
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Now, on the one hand,

I%%@) Rsoe-n,e(ﬂf)f’(ﬂf)g’(w)dx = 1{13) X]—eefe (@) () g’ (x)dx
_ / Fla
= (f9) -
= (Hflg) —Af(0)g(0). (5.14)

On the other hand,

tim i | G @) (@) )

A0
= ([ [7) @t + i (£(-0a0-0 - £0a0)
- <Hf\g>+gm (£(- e)g(—e)—f’<e>@). (5.15)
The expressions, (5.14) and (5.15) are equal, so
lim (f'(€)g(6) ~ f(~e)g(=e) ) = A/(0)g(0). (5.16)

Also,

()= '(=a)lg0) = f(e) (g(
+ f'(0g(0) -

Since g is continuous, ¢(0) = lime\ o g(+e). Furthermore, for some C' > 0, |f'(£e)| < C for
all 0 < € < 1, by Prop. [5.1.8] Consequently,

lim (17'(6) = ' (=e))9©@) = lim (7€) = f(=)g(=e)) = AF(0)9(0). (5.17)

~—
/\Q

The equality in (5.17)) holds for all g € H!(R). Therefore,

1{%[]"'(6) = /(=] = Af(0).

Now, finally, we arrive at the main result in this chapter:

Theorem 5.1.11 The domain of the associated Hamiltonian H is given by

D(H) = {f € H'(R) | f € H*(R\{0}), li{l(l)[f’(e) — f(=e] = Af(0)}.

Proof: C: Fulfilled by Lemma [5.1.7] and Lemma
DO: Fulfilled by Lemma [5.1.1] |
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In addition, f' € C(R\ {0}); in fact f’ satisfies a Holder condition.

Definition 5.1.12 Let « €€]0,1]; the set
COR):={fecCR)|3IC>0Vz cRVhER: |f(x+h) — f(z)| < C|h|*}

is called the Hélder space on R of order «.
Lemma 5.1.13 Ve € ]%, 1 : HI(R) C CO,l—e(R).

Remark: The elements of H!(R) are equivalence classes of functions, so the inclusion is
supposed to be interpreted as follows: any member, [f] say, of H!(R) has a representative
that is equal almost everywhere to a function belonging to C%!=¢(R).

Proof: Let e € ]3,1[ and f € H*(R) be given. Then f, f’ € L?(R), where f is considered as
the distributional derivative of f. First, by the inversion theorem, one can write

_L eik:pA
f@)= = /R F(k)dr,

with equality for almost all z € R (with respect to the Lebesgue measure on R). Since
f € HY(R), and that H'(R) C C(R) by Sobolevs lemma (see e.g. [11], Th. IX.24, p. 52) we
have that the equality holds for all z € R. For h # 0 one gets

f(z +hhl)_€— f@) _ hll_e\/%/Reikx(eikh_l)f(k)dk
_ hll_e\/%/Reikx(eikg(eikg_e—ikg))f(k)dk
= hll_g\/12?Aeik“eik32isin(kg)f(k)dk
_ }111_\/22% Rei’f(“%) sin(kg)f(k)dk.
Now,
|sin(k:g)| <1 and |sin(l<:g)]§ |/<;gy,
so one has that
[sin(kD)] = [sin(ko)[*|sin(h) [ < 1k = (k[

= GGIRDR (5.18)
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@+ h) — 1) L2 | [ e b
= v |, (g )/ (k)

1 2 . h, . 2

e 2 [ 1wy

1 2 1 R
Wl_e\/;/Rglle‘elhll‘ﬂf(k)ldk, using  (5.18)

22 [ e ' e

= 22 [ ey ) (519

IN

IN

IN

For € > % we have
(1+1k*) "% € LA(R). (5.20)

For f € H*(R) we have by [I1], Prop. 1, p. 51, that
(1+ k%) (k) € L*(R). (5.21)
By , and Holders inequality we get that
(1+ k)2 f(R) (1 + [K[) ™% € LM (R),
Therefore,

o+ h)— (@)
e = ¢

Consequently, f € CO17¢(R). |




Chapter 6

The eigenvalue problem

Having constructed the Hamiltonian of the d-interaction in chapter 5| we are now ready to
compute the spectrum of H. However, only the discrete spectrum will be computed. The
essential spectrum of H is [0, co[, but this not be proved.

6.1 Construction of the resolvent

The purpose of this section is to show that for a spinless particle moving on a string and
subjected to a Jd-potential, there is exactly one bound state.

The free Hamiltonian is

d2
dx?’
This operator is self-adjoint, which will be shown in the sequel. First it is shown, that it is
symmetric.

Symmetric: Let f,g € D(Hy) = H?(R); then by using Prop. one gets

Hy = D(Hy) = H*(R).

(Hoflg) = - /R f"(@)g(@)de = /R f(@)7 (@)dx
- /R (@) @)dz = (f|Hog),

and so Hy is symmetric.

To show that Hj is actually self-adjoint, it will be shown that Hy unitarily equivalent to a
multiplication operator. Let f : R — R be a Borel-measurable function that is finite almost
everywhere. Define now

{D(Mf> = {p € L*(R,B,dz) | fo € L*(R,B,dz)}
My = fo

Consider now the following "truncations’ of My: Let n € N and consider (X, By, dj,), where
X, = [-n,n], B, = BNP(X,) the subsets of X,, that are Borel sets, and du,, is the Lebesgue
measure on R restricted to [—n,n|. For each n € N, the trippel (X, By, du,) is a finite
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measure space. Let the functions f, : X;, — R be given by f, = fx,. Define the operators
D(an) ={p€ L2(Xnu B, dpy) | frp € L2(Xna B, dpin) }
an = fnSO

By [10] Prop. 1, p. 259, these operators are self-adjoint.

Lemma 6.1.1 With the notation as above, we have the inclusion
o
U 6(My,) € G(0y).
n=1

Proof: Assume that « € |J,2; G(My,); then IN € N : 2 € G(My, ). Now, Jp € D(My,) :
z = (¢, Mgy ). Define the map iy : L*(Xn, By, dun) — L*(R, B,dz) by in(p) = @, where

. o(x), for =€ Xy
px) =
0, for zeR\ Xy

Then iy is clearly linear; and since [ |f@[*de = [ X | fnel?dr < oo, then iy is an isometry,
so f¢ € L*(R,B,dx). Therefore ¢ € D(My). Consequently: (¢, M¢@) € G(M;). Identifying
(¢, My @) with (in(p), Myin(¢)) = (¢, My@), we get x € G(My). u

In fact, the sequence of graphs {G(M¢, ) }nen is totally ordered with G(My,) C --- C G(My,) C
--+ C G(My), but this will not be proven.

Lemma 6.1.2 Let f : R — R be Borel-measurable and finite almost everywhere. Then the
operator

D(My) = {p € L*(R,B,dz) | fo € L*(R,B,dz)}
Myp = fo
is self-adjoint.
Proof: My is symmetric, since f is real-valued, so G(My) C G(M}). Put L*(R,B,dz) = H
and define V : H x H — H x H by V(a,b) = (=b,a), for (a,b) € H x H. Now,
G(M7) = [VG(My)]*, by [14], Th.13.8

c [V JG(Myg)l" by Lemma(6.1.1

n=1

= [ Vvamy,)*- vy,

n=1
0o

Jweu )t = J e;)
n=1

n=1

N

o0
= Ug(an), since My, = M7,
n=1

C G(My).

Therefore G(MF) C G(Mjy), and since also G(My) C G(M7), then G(My) = G(M;). Hence
My = M;. m
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Theorem 6.1.3 The free Hamiltonian Hy = —%, D(Hy) = H?(R) is self-adjoint.

Proof: Put f(¢) = ¢2, ¢ € R. Then according to Lemma . the multiplication operator
My is self-adjoint on D(My) = {¢ € L*(R) | fo € L*(R)}. It Wlll proven that M is unitarily
equivalent to Hg, making Hy self-adjoint as well.

First,
D(F'MyF) = F'M;'DF)

= F'M;'L*(R) = F~'D(My)

= {pe Lz(R) | ¢ € D(My)}

= {pe L’(R) | fo € L*(R)}

— D(MF).
Assume that ¢ € D(Hp) = H?(R); then Hyp = —¢” € L?(R). This implies that —/J’ € L*(R).
By [14] Th. 7.15, FP(—ift)u = Pa for any tempered distribution u, and any polynomial

P. In particular, it holds for any function in L?(R). Therefore (-)2¢ = f$ € L?(R), so
p € D(M;F) = D(F~'M;F). Now,
d
FHop = ]—"(—i%)% = M 2Fp = Hop=F 'MpFe.
Hence, Hy C .7:*1Mf.7:.
Assume now, that ¢ € D(F'MyF) = D(M;F); then f¢ = (-)%p € L*(R). As before, this
implies that —¢” € L?(R); applying the inverse Fourier transform yields that —¢” € L?(R).

Therefore ¢ € H?(R); hence D(F~'M;F) C H*(R) = D(H,). Consequently, Hy = F 1 M;F.
|

Next, we prove that Hy is lower bounded. Let f € D(Hy); then

(Hoflf) = / f(a / F(@) P @)dz

- /|f )2 = | /]2

>

so ©(Hp) C [0, 00[, which means that Hy is lower bounded with zero as a lower bound.

Now, since Hj is self-adjoint by Th. and ©(Hy) C [0, 00], then o(Hp) C [0, 00[ by [14]
Th. 13.31. In particular: z € p(Hp) the resolvent set of Ho, whenever z < 0. This means that
(Ho — 2)~ ! exists, Ran(Hy — z) = L*(R) and(Hy — 2)~! € B(L*(R)).

At this point, the Green’s function for Hy is computed; it is called the free Green’s function.
The purpose is to obtain an explicit expression for the free resolvent (Hy—z)~!; more precisely,
(Ho — z)~! will be expressed as an integral operator with the free Green’s function as kernel.
This will again be used later to calculate the resolvent (H — z)~ L.

[Ru, (2)¥)(z) = [(Ho—2)""¢)(x) = [F M y2_p-1 FY)()
1

= \/T—W[f_l(((-)Q —2) ) * F)().
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Now,

e dk.

1
FL(()2 — ) ) =
(-2 == [ s
This inverse Fourier transform will computed using calculus of residues as follows: Put
eika: eik:z

k) = — .
W=~ erme—va
The numbers 4+/z are simple poles. Then the residues of f at 4+/z are:

Relh VD = ey ~ 2z

and . /o) - e—iVzT B e~z
A1~V = Ty~ e

Assume that x > 0; then

] ) = | < i :
im max = lim max |—— im max |———
R—o0 |k|=R R—00 0<0<7 R2€219 zZ| T R—oo0<6<7 R2 — |Z|
Im k>0
= lim —— =0.

R—oo |R? — 2]

Then [I5] Th. 1, p. 303 gives that

1 zkz i iz
PV/ PR dk = 2miRes(f,V/z) = \/Ee

Similarly: for x < 0, limp_,oc max{|f(k)| | |k| = R, Imk < 0} = 0, so again, [15] Th.2, p. 304
gives that

1 , .
PV / ekt dk = —2miRes(f, —v/z) = eV,

R k? — 2 vz
Hence 1 f
()2 = )" V(z z\f\x| ¢ z\f|x\
Now,
(Ho—2) (@) = ——[FL((()? - 2)"Y) = F 1))

V2r

- (o

= / eV/zlr— Yah(y)dy

/Gwy, y)dy,

where the function G in the two variables x and y given by

Glx,y; 2) = ﬁez\ﬂx Yl
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is the free Green’s function.

We now introduce the auxiliary operator, 7, given by

Now, 7 is linear, and |7f| = [f(0)] < [|fllc < C|/fll#1(r), where the last inequality comes
from Sobolevs embedding theorem. The operator 7 is thus seen to be bounded; specifically:
7 € B(H'(R),C). Therefore it has an adjoint operator 7* € B(C, H~!(R)) that satisfies

(tfla)c = (f, 7).

Here the brackets (-,-) are duality brackets.
Let f,§ € L*(R) and define

02(f.9) = A7 (Ho — 2)"2 f,r(Ho — 2) " 2§)c.

The form b, is bounded which is seen as follows:

0A7(F ) = M(r(Ho — 2)"2 f,7(Ho — 2) " 23)c|
< Ir(Ho — 2) "2 fl|7(Ho — )~ 23|
= [(Ho — 2)2 f1(0)]|[(Ho — )23 (0)|
< I(Ho = 2)72 fllooll (Ho — 2) 2 §loo
< NCI(Ho — 2)”% fllaa @) Cl (Ho — 2) " 2 gl (wy
< NCI(Ho — 2)~ % |lsgrzmy 2 @y | FI2C1 (Ho — 2)7 512 @y 21y 112

const ()| 12/l 2.

By the representation theorem for bounded forms, or rather the corollary to it, Cor. [3.0.23
there is an operator Vy(z) € B(L?*(R)) such that

Vf,5 € L*(R) : hA(f,3) = (Va(2) f19)-

Now, for any f € L2(R),

-

A, f) = Mr(Ho—=2)"2f,7(Hy—z)
(AMHo —z)"27"7(Ho — )~
(VA2 f1F).

l\’)\»—t

)2 f)e
715

By the corollary to Th. 12.7 in [14], Vi (2) = A(Ho — Z)_%T*T(Ho - z)_%.

The next proposition says that for sufficiently negative z, the operator V)(z) has norm less
than one. This is convenient in the construction of the resolvent of the Hamiltonian H.

Proposition 6.1.4 VA <0 32 < 0: [|[VA(2)|lz2 )1 m)) < 1-
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Proof: Assume first, that A = 0; then put e.g. z = —1. Now, |[Vo(—3)|| =0} =0 < 1.
Suppose next, that A < 0 and that z < 0; then

1, 1
IVZ(2)IBre@ymwy = IIAHo —2)"27*7(Ho — 2)™ 2|12 (), 11 (R))
1. 1
M (Ho — 2)"2]"[7(Ho — 2) 2]HB(L?(JR),HI(JR))
_1
M7 (Ho = 2) 72 [ 322() 0)- (6.1)

IN

Now,

[Alllm(Ho — 2)7%”%@2@{),@) = \sup{|r(Ho — 2)72f| | | fll 2w =1}
I sup{|[(Ho — 2)~2 fJO)? | | £l 2y = 1}
< \sup{|(Ho = 2) "2 f11% | I fll 2 = 1}, (6.2)

By the Sobolev embedding theorem,
1
IAlsup{|(Ho — 2) "2 fI3 | /1|2 = 1}
_1 1
N[ sup{CII(Ho = 2)"2 fll3sy | [ Flz2@y = 1}, where o <s<1
1
— NCsup{ |V F(Ho — 2) 3 flZay | 1z = 1}
1
= [ACsup{[[(k)*(kK* = 2)"2 f ()| Fomy | /]2y = 13, (6.3)

IN

where (k) := (1 + \k\2)% We now have that

A 28 A
NC s R = R € O s sup S g
1£1l £2 my=1 I1£1l L2 my=1 kR &= — z
(kz + 1)3
= |A —_—. A
| |CZE§ g (6.4)
Consider now the function (k2 )
+ 1)
L,(k)=———.
(k) k2 — 2

It can be shown that if z < —%, then the derivative of L,, L’, has three distinct zeros:

1 1
TR TR s L N o Y
s—1 s—1

Computing the second derivative of L, and evaluating yields that

L/z/(kl) > 0, L/Z/(kg) <0, L/Z/(kg) < 0.

Therefore, k1 = 0 is a local minimum (the only one), and k2 and k3 are local maxima (the

only two). Now,
1452 1 s
1+ sz (s—l ™ )

S




6.1 CONSTRUCTION OF THE RESOLVENT 67

Hence
1+
(k2 +1) ( 1 T 1) £(2)
sup =:
kER ki —Z 1s+—slz —Z g(z)
Now,
, 1+4s2z 4 1 s—1 s s—1
f'(2) s=1 o142
= = S ]. 5
g'(2) =51 —1
and then )
f'(z)
z——o0 g'(2)
Furthermore,
1
lim g(z) = lim < RN z> = 00.
2——00 z——00 \ §—1
L’Hospital’s rule now applies (see e.g. [12], Th. 5.13) and one obtains:
2 1)8 !
lim sup 7(]{ +1) = lim 7(2) I'(z) =
im—oper kP -z ammoog(z)  ammoo g(2)

So for the number C~!|A| 7!, there is a number zy = 29(C, \) such that for any z < zy one has

that 12
1 S
sup 7( ) < C_1|)\|_1;

ker k? —
and this implies that
|>\|021€1§ (k;tlz) < AlccTH AT =1, (6.5)
By , , , and , one has for sufficiently negative z that

VA(2)| < 1.

A priori one has that
H—z:D(H) — %(R)
Ho — z + M%7 : H2(R) — H~Y(R).
We rewrite as follows:
(14 A(Ho = 2) 37 (Ho = 2) 2] (Ho — 2)%
1+ Va(2)](Ho — 2)°

Hy—z+ X"t = (Hy—=z)
= (Ho—2)

Nl N

Now, (Hy — z)% is invertible for z < 0, and for z sufficiently negative, ||[V)\(2)| < 1 which
implies that 1 + V) (2) is invertible and can be expressed as a Neumann series:

[e.e]

1+ Vi) =D (=D)"AR)",

n=0
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the series being absolutely convergent in the operator norm. Therefore the operator Hy — z +
AT*T is invertible with

R(z) = (Ho—z+ A7)~}
— (Ho—2)"2[1+Vi(2)] "(Ho — 2)"2
= (Ho—2)"2 i(—l)%(z)“(ffo —2)72
— (Hy—2)"3 i(—l)” ()\(Ho )i rr(Ho — z)—%)” (Ho— 2)"3
= (Ho—2z)" .
+ (Hy—2)73 il(—l)n (A(Ho )i rr(Ho — z)—%)” (Ho—2)"%.  (6.6)

One can prove by induction (the proof is left out here) that for any n € N,

(Ho — )73 (=1)"\" (Ho — )" r(Ho — 2)7#)" (Ho — 2) 3
= (=1)"\Y(Hy— 2)" Y [r(Hy — 2) "] Lr(Hy — 2) 7L
Inserting this into , one gets
R(z) = (Hy—2)""

+ Z(fl)"A"(Ho —2) Y (Hy — 2) M (Hy — 2) 7L (6.7)
n=1

In order to proceed we take a look at the operator 7(Hp — z)~!7* : C — C. Given an arbitrary
a € C; then by using that F(ad) = F(m¥a) = 04(271')_% we get that

1
k2 — 2z
1

= 04(27r)7%.7:71 <k2 —z)
WiVl

= a(27r)*%7

V2ym

_ ot givall

(Hy— 2)"Y(m*a) = F! F(t*a)

2\/z
= G(,0;2)a,
where G is the free Green’s function computed earlier. This implies that
[7(Hy — 2)"17%](a) = G(0,0; 2)av.
Since the above computations hold for an arbitrary o € C, we have

7(Hy — 2) 7% = G(0,0; 2).
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Substituting this into (6.7)) we get

R(z) = (Hy—2)"'+ Z 1)"A™(Hy — z) " 7*[G(0,0; 2)]" 17 (Hy — 2) 7t
= (Hy—2)""
— (Ho—2)"'7* ()\ > [=AG(0,0; z)]"1> 7(Hy — 2)~* (6.8)
n=1
If z < — 1|6|2, then
1|1 1
G(0,0; — = < =
G0, 0:2)] = T | Vz TN
This implies that
I[=AG(0,0; 2)]" Y < 1.
The series in is then the geometric series:
i —AG(0,05 2)] S
— 14+ XG(0,0;z2)"
Now, we obtain an expression for R(z):
R(z) = (Hy—2) ' — 2 (Hy— =) ' r(Hy — 2)! (6.9)
14+ AG(0,0; 2) ' '

This operator-valued function has a singularity, whenever 1 + AG(0, 0; z) has a zero.

1 1
1+ XG(0,0;2) =0« G(0,0;2) = ——= = ——
+ ( ) 72) ( ) 72) 2\/2 A7
which is equivalent to
)\2

The next step in calculating (H — z)~! is to show that whenever z is negative enough, then
(H — 2)R(2) = I12) and R(2)(H — z) = Ip(p), which means that R(z) = (H — z)~L. To do
so, the following lemma is needed.

Lemma 6.1.5 Let z € |—00,0[ be a real number, negative enough to make 1+Vy(z) invertible.
Then ) )
Ran ((Ho — )31+ Via(2)] "N (Hy — z)—a) C D(H).

Proof: Put R(z) := (Ho—z)~ [1 + W (2)] 7Y (Hy —2)~ %; then being a product of everywhere
defined bounded operators on L?(R), R(z) itself is everywhere defined and bounded. Now,
given f € RanR(z); then there is an f € L%(R) such that f = R(z)f. Let f,g € L?(R) be
given and define

b-(f,9) = b(f,9)—=2(flg)
= (f'lg) + Xf,m7g) — 2(flg),
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where D(h,) = D(h). We now get that

b(f.0) = /R K (RGRYAE — 2(f13) + Mf.77g) — 2(/]9)

- /R (k2 — 2) f(R)3)dk + A(F, 7*7g) — =(flg)
= [ VR =2 f ()R — 2g(k)dk + Mf, T rg) — 2(flg).

R

The functional calculus version of the spectral theorem of unbounded operators now gives that

b(f.9) = /R (Hy — 2)% f)(2)[(Ho — 2)3g)(x)dz
= ((Ho— 2)2 f|(Ho — 2)2g) + \f, 7*7g).

Put ® := (Hp — z)%f and U := (Hy — z)%g. Then,

b.(fr9) = (BW)+N(Ho—2) 2®,7°7(Hy — )2 )
= (B|W) + M([r*7(Ho — 2) 2] (Ho — 2) 2 ®|)
= (®|V) + (A\(Hy — 2)" 277 (Hy — 2) 20| )
= (D) + (Va(2)D| D)
= ([1+W(2)]9|P)
— ((Hy—2)"2f|¥)
= (fI(Ho—2)"20)
= (flg).

The above computations lead to

0(£,9)l = 10:(f,9) +2(fl9)l = 1(f +2Dlg) < IIF + 2/ 2llgll2
= const(z, f)|gll2- (6.10)

Since (6.10)) holds for any g € L?(R), then by Prop. [3.0.40, f € D(H). [ |

Next, it will be shown that (H — 2)~! = R(2) for z negative enough.

Proposition 6.1.6 Let z € | — 00,0[ be a real number, negative enough to make 1 + Vy(2)
invertible. With R(z) as in Lemma[6.1.5, then

(H —2)"' = R(2).

Proof: Given f € L?(R). Since D(h) is dense in L*(R) and

b-(f.9) = (H - 2)flg) = (flg)

for all g € L?(R), then (H — 2)f = f. But f = R(2)f, so (H — z)R(z)f = f. This implies
that
(H - Z)R(Z) == ILQ(R)‘

The proof that R(z) is also a left inverse is left out. [ |
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Now, analytic continuation will be used to extend (H — z)~! to the biggest open set in C in
which (H — z)~! is norm-analytic.

Theorem 6.1.7 The resolvent of H is given by

A

(H =2 = (H =27 ~ 5m057

(Ho — 2)"'7*r(Hy — 2) 71,
where z € C\ ({—’\;} U [0, oo]).

Proof: It is proven that the operator-valued functions (H —z)~! and R(z) coincide, whenever
z is negative enough, that is on ] — 00, zg] for some 29 < 0. Given f,g € L%(R), then the
complex-valued functions z — ((H — z)~! f|g) and z — (R(2)f|g) also coincide on | — 0o, zo].
The set | — o0, 2p] has an accumulation point in C, and then by [2], Th. 16.26, ((H — )~ f|g)
and (R(-)f|g) coincide on any open set in C on which they are both analytic. They are both
analytic on C\ ( —)‘TQ} U [0, o0).

Now, given z € C\ ({—)‘72} U [0,00]), then ((H — 2)~'f|g) = (R(2)flg) for all f,g € L?(R).
By the corollary to Th. 12.7 in [14], then (H — 2)~! = R(2). |

6.2 Locating the discrete spectrum

In this section, it will be proven that —)‘TQ is a discrete eigenvalue of multiplicity one using
Riesz projections, and the corresponding eigenfunction will be computed. Due to lack of time,

the essential spectrum of H will not be determined.

Definition 6.2.1 (Admissible contour) Let A be a closed operator on H, with spectrum
o(A). Assume that Ao is an isolated point of o(A). A closed contour I' is said to be an
admissible contour for A and Xg, if the closed convex envelope of T, €o(T") fulfills that

@(I) N o(4) = {A}.

Definition 6.2.2 (Riesz integral) Let A be a closed operator on H, Ao an isolated point of
o(A) and T' an admissible contour of A and A\o. The Riesz integral for A and )\ is defined to
be the operator-valued integral

1
27

Pa({ro}) é(A ~ )l (6.11)

the contour integral being evaluated in the counter clockwise direction.

Denoting by (-,-) the inner product in L*(R), the operator given by the Riesz integral in (6.11))
is the unique operator that fulfills that

Woo e ®): (55 fla=a7a) ve) = o fia- 20

2mi 2ri

Now, the main result in this chapter can be stated:
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Theorem 6.2.3 Let H be the self-adjoint operator that is associated to the symmetric, lower
2

bounded, closed sesquilinear form b defined in (5.1)). Then _/\T 18 the only discrete eigenvalue

of H. Its multiplicity equals one.

In particular: the d-interaction Hamiltonian has exactly one bound state.

Proof: Put F := —)‘;. Assuming that o(H) C {E} U [0, 0o[, where oess(H) = [0, 00], then
put I := OB(FE, 1|E|), the boundary of the disc centered at E with radius 1|E|. This closed
contour, I', is an admissible contour for £ and H. We now compute the Riesz integral for H
and E. Write

(2.
_ _ -1 _ A -1k -1
= (=0 = (g o - T - ) e ). (612)

(Ho — =), ¢) :</G@%@WWWW>:/AG@%@WWWWWW

- //G 2, y: 2)0(y) D (@) dyda. (6.13)

The second term in (6.12)) is treated as follows:

A — *
<1+anmw“%‘z>” (“_”1w¢>
s (- )

Now,

A
TTaG(0,07) (T =2 T = 2)7e)

A —
T 1+AG(0,0;2) /G (0,932 (y>dy'AG(07w7Z)¢(w)dw. (6.14)

Since G(z,0;2) = G(0,2;%), we get that (6.14) equals

1+)\G00z//G0y’ 1)G(0, ;) (x)ddy

- a0 0w dedy (6,19

Next, the contour integral of (6.13]),

2m?{//G$yv y)¢(x)dydz = 0,

since the function ((H — )74, ¢) is analytic in the region enclosed by I'. The contour integral

of E13)

27” {1+/\G 0,0; 2) //G (0, ; 2)9(y)G (2, 0; 2) oz )dwdy} dz (6.16)
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can be computed by use of the calculus of residues. Denote by f, the integrand in (6.16). Put
g(z) = —/\//G (0,9; 2)¢(y)G(x, 0; 2)p(x)dyda,
hz) = 14+ XG(0,0;z2)

Now,

Res(f,E) = }slz/((E) A g Jg GO,y E M(y)Ci(z,o; B)o(z)dyde

~ _aphi / / G0, y: EYb(y) Gz, 0: B)p(@)dyda.
RJR
The integral in (6.16]) then equals
omiRes(f, E) — SE / / G0, y: B)ib(y)G (=, 0; B)p(w) dyd. (6.17)
R JR
The expression in (6.17)) can be re-expressed using Diracs bra-ket notation:
8E3|G(0, 5 E)){G(0, B)),

which is seen to be a rank one operator. Hence F = —)‘72 is the only discrete eigenvalue of H.
Consequently, H has exactly one bound state. |
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Appendix A

Prerequisites

Proposition A.0.4 Let f € HY(R). Then
b
1)~ £(@) = [ (Df)(@)da (A1)

Proof: First, the integral is convergent, since Df € L*(R) C L{ (R) and [a,b] is compact.
Therefore, Df € L'([a,b]). Since L'([a,b]) € D'([a,b]), we get from [9] p. 87, that Df is
equal almost everywhere to a function that is absolutely continuous on [a, b]. By [13] Th. 7.18,

(A.1)) is true. [ |

A.1 Integration by parts in Sobolev spaces

Lemma A.1.1 Let a < b. Assume that f € H?*([a,b]) and g € H'([a,b]). Then usual
integration by parts still holds true:

b b
/ f'(@)g (z)da = —/ f"(@)g(z)de + [ ()9(x)]5-

Due to lack of time, the proof of Lemma is left out.

Proposition A.1.2 Assume that f € H2(R) and g € H'(R). Then usual integration by parts
still holds true with vanishing boundary terms:

/R f(2)g (x)de = — /R " (x)g(x)dz.

Proof: Truncate the function f’g" with x|_, ,f'¢’; then for almost any = € R, the sequence

(X)) (@) (2) bnen is monotically increasing with x(_n 1 (2)f'(2)g' () / I'(x)g(x) as
n — 0o0. By the monotone convergence theorem, lim,, fR X[=n,n] f'q" exists and

/R F@d@de = lm | xng@)/ (@) (@)de

n—oo R

= i (= [ @+ @, ) (A.2)

n—oo
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Similarly, X[ (2)f" (z)g(x) / f"(x)g(x) as n — oo, and f’g € L'(R) since f € H*(R) and
g € H'(R). Again, by the monotone convergence theorem, limy, o0 [ X{—nn] () f7) (2)gn(2x)d2
exists and

/Rf”(ﬂ?)g(CC)dﬂ?Z lim [ X[ (2) £ (2)gn(2)dz = lim ’ f(@)g(x)da. (A.3)

n—oo Jp n—oo |_.

Sobolevs embedding theorem ([9], Th. 7, p. 93) gives that f’,g € Cx(R), the continuous
functions on R that vanish at infinity. Therefore also f'g € Co(R). Consequently,

lim [f'(z)g(2)]", = lim (f'(n)g(n) — f'(-n)g(-n))

n—oo n—oo

= lim f'(n)g(n) — lim_f'(=n)g(—n)
= 0 (A4)
Now, , and imply that
[ 1@ =~ lin [* f@gde + lim (@),

— - [

Proposition A.1.3 Assume that f € H'(R) N H2(R\ {0}), limeo[f'(€) — f'(—€)] = Af(0),
and g € HY(R). Then usual integration by parts still holds true:

/ f(@)g (@)de = - / f"(2)g(@)dz — Af(0)g(0).
R\{0} R\{0}

Proof: The function f’¢’ is truncated as X[—n,— 102 n}f’y n € N. Then we have that
X[-n,— Lu[L 2(@)f'(2)g () / f'(x)g(x) for all 2 € R\ {0}. The monotone convergence
theorem 1mphes that lim,, fR\{o} X[on—1]u[t (@ )f!(x)g/(x)dz exists and

[ g = Jim [ x @) @@
R\{0} oo JR\{0} neen

Using Prop. we get

[ 1@ = - [7 g+ 1@l
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Similarly,

1

n -

F@g@de = - / 7 P@)g(@de + [f (2)g@)] g

—-n

Now,

+ (fe 1 1) (~n)g(—n) (A.6)
+ g ) - f (0 )g(n ) (A7)

The boundary terms in (A.6) corresponding to 4oo vanish as follows: since f € HZ(R\
{0}), then fpi1 1 € H?(R), and then by Sobolevs embedding theorem fcp% 1 € Cx(R), the
472 2

continuous functions on R that vanish at infinity. Furthermore, (f¢ 1 %)(az) = f(z) for all
2| > £; this implies that (fgoié)’(n) = f'(n) for all n € Z\ {0}. Consequently,

lim (feo

11
n—+oo 4°2

)(n) = lim f'(n)=0. (A.8)

Also, g € HY(R) C Cso(R), 50 limy, 400 g(n) = limy, 400 g(n) = 0; this together with (A.8)
gives that

)'(n)g(n) = lim f'(n)g(n) = 0. (A.9)

n—+too

The behaviour of the boundary terms (A.7)) in the origin is determined in the following. Write

lim (fep

11
n—=+oo 402

F(=n g D) = f g D) = S )[g(0) - g(n )
— L= )[g(0) - g(—n D)
- O - Tl (AL0)

By Prop. {f'(n"H}pen and {f'(—n"1)}nen are bounded. Since g is continuous, then
9(0) = lim, 100 g(n™1). Consequently,

lim f'(n"H)[g(0) —g(n1)] =0 and lim f'(-n"Y[g(0) —g(-n"1)]=0.  (A.11)

n—oo n—oo
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Now, by assumption lime o[f'(€) — f'(—€)] = Af(0), so

lim g(0)[f'(n™") = f'(=n"")] = Af(0)9(0). (A.12)

n—oo

By , and , one arrives at
lim [f'(=n"")g(=n=T) = f'(n"H)g(n=1)] = =Af(0)9(0).

n—oo

Since X[L ] (z)f"(x)g(x) / f"(x)g(z) for all x € ]0,00[ and f"g € L'(]0, 00]), then the limit

lim, o [1 f”(x)g(x)dz exists and

/]0 i =l " P @)g@da.

n—oo

Similarly,

Consequently,

/R\{O}f(x)g/(x)d:c = nh_)II;O (/_n f’(x)g/(x)dx+ 1 f'(x)g’(w)d:v)




Appendix B

Existence of non-trivial testfunctions

This is devoted to the explicit constrution of a testfunction on the real axis. A testfunction
on R is a function that fulfills that it is smooth (i.e. arbitrarily often differentiable in the

classical sense), and has compact support.

Lemma B.0.4 Define the function f:]—1,1[ = R by

1
x2—1

fz) =

Then the n’th deriwative of f exists and is given by

fP@y= > =D (z+1)"z-1)"

a,BeN
a+f=n+2

In particular:

fe(c"(-11)=c>(-11].

n=0

Proof: The proof is by induction: For n = 1, one gets:

d 1 d

1 dr ((:c+ DYz — 1)_1)

fla) =

= U (D' +)2@-1)" +(@+1) Hz—1)7?

= 1-(-D" > @+ *z-1)"
a,BEN
a+p=1+2

(B.1)
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Assume that (B.1)) is true for a given n € N. Now,

FOD () = % A=) S (@)@ —1)P
a,BEN
a+B=n+2
= eyt Y ey ee-n
P et
= Y (e ) e - ) ) (B - )
P et

Shifting index one gets that

@) = -t Y (cat D) e - 1)

a,BeN
a+pB=n+3
+ oal(=1)" Y (@)A1
a,BeN
a+pB=n+3
= W) a2 Y @) -1
a,BeN
a+PB=n+3
= nl(-)"Na+8-2) > (@+1)“(z-1)"
a,BeN
a+pB=n+3
= Yo )" @ -7
a,BeN
atfB=(n+1)+2
which is (B.1)) when n :=n + 1. By induction, (B.1)) is true for all n € N. [ |

Definition B.0.5 Let ECR, f,g: F — R and a € R be an accumulation point of E.
We say that f is O(g) as x — a, if

36 >03C >0Vx € EN(B(a,d)\{a}) : |f(z)] < C|g(x)|.
We say that f is O(g) as x / a, if

dzg e EN]—o00,a] 3C > 0Vx € E N |xo,af : |f(x)] < Clg(x)].

Notation B.0.6 The notations f € O(g), or f(z) € O(g(x)) will sometimes be used to
express that f is O(g).

Proposition B.0.7 Let E CR, f1,fo,g: E — R and a € R be an accumulation point of E.
Then if

)

f1€0(g) as =/ a
fo€eO(g) as =/ a
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then the function max{fi, foa} : E — R defined by max{ f1, fo}(x) := max{ fi(x), fo(x)} fulfills
that
max{ fi, fo} € O(g) as z= /a.

Proof: Assume that fi, fo € O(g) as x " a; then for i = 1,2 we have by Def. that
dr, € EN|—o00,a] 3C; > 0Vz € E N |z, af : | fi(z)] < Cilg(z)].
Put 2 := max{z;,z2} and C := max{C}, Ca}; then
Ve e EN o, al : [fi(z)] < Clg(x)| A |fa(2)] < Clg()],

which implies
Ve € EN |zg,af : max{fi(z), fa(z)} < Clg(z)|.

Consequently, max{fi, fo} € O(g) as ¢ /" a. [

Definition B.0.8 Let ECR, f: E — R and a € R, an accumulation point of E, be given.
Then the limit superior of f as x — a is defined as

limsup f(z) = lim sup{f(z) | = € EN (B(a,€) \ {a})}

r—a

Proposition B.0.9 Let ECR, f,g: E — R and a € E be given. In order to have that f(x)
is O(g(x)) as x /" a, it is sufficient that

lim sup ()]

< 00
z—a |9(2)|

Proof: The proposition will be proven by contraposition. Assume therefore that f(x) is not
O(g(z)) as z /" a; then

Vzg € ] —o00,a[ VC > 0 3z = z(x0,C) € E N Jxg,a : |f(x)] > Clg(z)].

Now, given zg € | — 00, a[ and C' > 0 we get

] ]f(a:)] = limsu (x)] x a—e€,a
imsup 555 = o { T e € B o cal)

lg
= xloiglas { fg | |:L‘€Eﬂ]3:0,a[}

> lim C
zo /a

= C.

Since limsup,,_,, | éx) LS C for the given C, which was arbitrary, then it must be larger than

@)
s o) ~

any real number. onsequently




82

The next lemma will be used to make some estimates in the proof of Lemma which
says that there exist non-trivial smooth functions with compact support.

Lemma B.0.10 Let f be the function defined in Lemma[B.0 If k,n € N, k <n, then

fB @) is o(f @) as oz /1

Proof: If k = n, there is nothing to prove, so assume that k,n € N with k < n. Then

. k' i@ +1)"%z - 1)
fO@)] |ZO€+ sen  KN(=1)"(z+1)"%(xz—1)7"]
| f() ()] 13 apen nl(=1)(z+ 1)~z —1)7F
a+pB=n+2
12 apen K(=DF@+ 1)@ = D)7F|(z + 1)z - 1)
_ at+B=k+2
|32 apen nl(=1)™(z+ 1)~z —1)7F||(z + )t (z — 1)+
a+B=n+2
|22 apen K(=1)F(@+ 1) (@ — 1)m A
_ a+p[B=k+2
122 apen nl(=1)*(z+ 1)mHime(z — 1)n+1-F|
a+6=n+2
S apen Kz 1time|p — qntis
< a+p=k+2
Y apen nl(=1)(z +1)ne(z — 1)n o
a+06=n+2
_ 2”k'§:k+l‘x ]wn+1—ﬁ

|§: o,BEN Tﬂ( 1)n (x.+.1)n+1—a<17__1)n+1_ﬁ’
a+6=n+2

2nk'§:k+1|x |n+1—ﬁ

! (=1)™(@ +1)" 4+ > oca<nn n!(=1)"(z + 1)t (z — 1)nt+t \BT
1<f<n, a+f=n+2

The expression in the denominator in is a polynomial, call it p, of degree n that has n
roots counted with multiplicity according to the Fundamental Theorem of Algebra. Enumerate
them as z1,...,2,. Since z = 1 is a root in p(x) — n!(—=1)"(x + 1)™ and (1 + 1)" # 0 one
cannot have that x =1 is a root in p(x). Consider the set

n YLz
k=1
Put

A max Z, for Z #10
o 0, for Z=10

If Z =0, then there exists a number M > 0 such that p(x) > M for all € |0,1[. If on the
other hand Z # (), then now, there is a number M’ such that p(xz) > M’ for all x € [z, 1],
whenever xg € |A, 1[. Eitherway, one has from (B.2)

S P ()] «
—1on n+1— B
[ <M k'§ :|:c 1] (B.3)
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for all z € [zo,1[. In (B.3) one has that as = " 1, then |z — 1] Y\, 0; all the exponents
{n+1—-p0|p=1,...,k+ 1} are non-negative, so one has readily that the function on the
right-hand side of (B.3]) is decreasing on [xq, 1[. It therefore attains its maximum at zy. Now,

k41
|f(k) (z)] -1 +1-8
S < M2 xo — 1™ ,
() 2 lro=1
whenever z € [xg, 1], zo € |4, 1[. Now,
: /¥ ()] : 1f P ()] (n)
limsup ——= := limsup< -~ |z €|l —¢€ 1], f"(x)#0
oo I R R R
o |f®) ()] (n)
= xlolm1suP {W | z € Jzo, 1[, f(x) #0
k41
< MUK i —1|nth
o 96015112 o |
B=1
= 0
< ©Q.

Therefore, according to Prop. we have that |f¥)(z)| is O(|f" (x)|) as = /1.

Lemma B.0.11 The function j : R — R defined by

i) = {exp (ﬁ) ,  for x| <1

0, otherwise

9

has the following three properties: j > 0, suppj = [—1,1] and j € C>®(R).

Proof: j > 0: Obvious.
supp j = [—1,1] : Immediate from the definition of j.

(B.4)

j € C°(R) : For any n € N, the n’th derivative of j restricted to [—1,1]¢ is equal to 0. Write
flx) = (x+1)" (z—1)"" for |z] < 1; then jj_y 1y = expof. Now, exp, f € C*(]—1,1[). For
any n € N, the n’th derivative of j restricted to | — 1, 1] exists and is given by Faa di Brunos

formula, Bell polynomial form as

i"@) = (expof)™(x)

n

= > (ep® of)(@)Builf (), ..., f ()]
k=1

= (expof)(@) ) Buslf'(2),.... [ ()]
k=1

= J@) Y Buglf (@), .., fOT ().
k=1

Consequently, j is smooth on | — 1, 1].
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The only thing left in showing smoothness of j is to show that j is smooth on the boundary
of supp j, O(supp j). Without loss of generality it will be shown that j is smooth at x = 1.
This will be done by induction.

First, since

)zO and lim 0 =0,
—1 \1

I
one has
j(1) =0 = lim j(x),
z—1
so j is continuous at x = 1 with j(1) = 0.

Next, suppose that the induction hypothesis is true for some n € N, i.e. given some n € N,
then ](" D(1) exists, 51 (1) = 0 and ™) is continuous at x = 1. We want to show that
3™ (1) exists, 70 (1) = 0 and ™ is continuous at z = 1.

Consider the limit
lim (). (B.6)

r—1

We want to show that it exists, and is equal to j() (1) = 0. In order to do so, the corresponding
one-sided limits will be computed. The right-hand limit is obtained as follows: given € > 0,
put §(e) = ¢ > 0; then, since j () = 0 for any = € [—1, 1]¢,

™ @) =0l = [j") (@) < e, whenever @€ ]1,1+ 4]
This means that

() () =
lim j (z) = 0. (B.7)

The left-hand limit will be treated in several steps. By (B.5) it can be written as
lim ™ (z) = 1i Bk (kD) (). B.8
lim j*(z) = lim j(e Z ®lf S f ()] (B-8)

It will now be shown that lim, ~ j(x)f™(z) = 0. For that purpose, let 0 < h < 1 be given;
then

JA=m) M =n) < j1-n)r"Ma-n)
< jd-h) > nl@-h)"h"
at n2
n+1
<

FL=R)R"E> k(2 — h)®
a=1

< jA=hh Y n+1).
By definition of j we get
exp o A" M n+1)! = exp o A" (n + 1)!
(I1-h)2-1 ' h? —2h '

< exp< 21h>h i £ 1)),
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The change of variables h — (2t)~1 gives

oo (et = oo () (3) o
1
— et (21t>_n_ (n+1)!

2 (p - 1)1 e i

Now, h \, 0 if and only if t — oo, so [12], Th. 8.6 yields that

lim j@)If M @) = lm =m0 h)
< 2"ln 4 1) hm et = .

Since j > 0 on [—1, 1], this implies that

ilfn"ij( 2)|f™ ()] = 0. (B.9)

Note that in showing , the induction hypothesis was not used; it will be used later.
Consequently, is true for all n € N.

Now,
i @) = @) | Y Bl (@), O (@)
k=1

< (@)Y Blf (@),.... f @) (B.10)
k=1

The Bell polynomials are given by
Bl f'(z),.... "D ()]
n—k+1

n! m) (. \\im
= X e U@

(J15-rdn—k+1)ES m=1

where S = {(j1, ., jn_kt1) € NgTFFL| E" M G =k, ", = n}. Now, Lemma

m=1

B.0.10| will be exploited. Since m € {1,...,n— k—i— 1} we get that | £ (z)] is O(|f—*+D (x)])
as x /' 1. Therefore,

Jzo €10,1[ IC,, > 0 Va € Jao, 1] : [0 (2)| < Cpa| FOF D ()]

This formula implies that for all € ]z, 1] one has

n—k+1
|Bn7k[f/(x),...,f(n—k—&-l)(g;)ﬂ < const - Z H |f(m) )jim
(15 dn—k41)€S m=1
n—k+1
< const - Z H (Con| FHHD) ()] )3
(J1seeesfin—tt1)ES m=1
n—k+1
= const - card(S) - |f(”_k+1)(x)|k. H Cim
m=1

= const - [ (2)|F. (B.11)
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Above, the constants card(S) and H”m;k1+1 C were absorbed into const. From (B.10)), (B.11)
and Lemma [B.0.10, we get for any x € ]z, 1| that

’j(n) (x)] < j(z)- const - Z !f(n_kﬂ)(x)’k
k=1
< () - const -y (Gl F ()"
k=1
e [P @) for (@) <1
S ](qj) const - n 1§l€a§n{0k} {’f (x)|n’ for ‘f(n)(;[;)’>1
. [fM (@), for [fM(a) <1
< Const-](fﬂ)-{u(n)(x”n’ for |fn)($)|>1
< const - j(z) - max{|f(") (z)], ]f(”)(x)]"}- (B.12)

Above, the constants n and maxlgkgn{éf} were absorbed into const. In the following it will
be proven, that for some N € N, max{|f™@| | ™) ()"} is O(|fN)(z)|) as = 1. In order
to do so we prove that |f(™(z)| and | (z)|* are O(|f™N)(z)|) as  / 1. In other words it
is needed, that

Jz1 €10,1[ 3C, > 0V € Jag, 1[ - |f™(z)] < Ch|f ™) ()| (B.13)

and

Jzy €10,1] IC > 0 Va € Jag, 1[ : |F ™ (2)[™ < Co| fMV) (2)]. (B.14)

For n =1, put N = 1; then (B.13)) and (B.14) are true. For n > 1, put N = n? +n — 1; then
N > n, so (B-13) is true by Lemma [B.0.10| Therefore, | (z)| is O(|f™)(z)|) as x /' 1.
In order to show formula (B.14), it is sufficient according to Prop. to show that

7“)0 - 1msu ’(n(aj)’n T —€ (N (z
; = i p{|f oy | Fel-etl s <>#o}

< Q.
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Now,
I[(—1)™ 1)~z —1)"°"
‘f(n) @ ‘Za+036:€§+2n (—D)"(z+1)"%(x—1)""|
) ()] |22 aper NU=DN(z+1)~*(x—1)77]
a+pB=N+2
1> oypen nl(=1)"(z +1)"* (2 = 1) 77" |(z + DN (@ — N
a+pf=n+2
122 apen NU=DN(z+1)(z —1)7F||(z + )N (z — )N
a+pB=N+2
12 apen nl(=1)"(z +1)" (@ - 1)
a+pB=n+2
122 apen NU=DN(z 4+ DNH1=o(z — )N +1-0]
a+B=N+2

n
(Z . n!’x+ 1’n+1fa’x _ 1’n+1ﬁ>

a+pB=n+2

<
B |Z a,BEN N!(—l)N(;p_Fl)NJrlfa(x_1)N+1,ﬁ|
a+p=N+2

n
(gt niznfe — 1m1-9)

IS asen NW=1)N(z + 1)NHl-a(z — 1)N+1-7|
a+p=N+2

<

(B.15)

In the expression (B.15)), the term that corresponds to a = 1 is singled out, and one gets that
the expression (B.15)) is equal to
n
n!n2n2 (zgi% |.%' _ 1|n+175)

MDY+ D + Tacoeres NI(=D (e + D¥Fo( — VA
1<BSN, a+B=N+2

(B.16)

The expression in the denominator in is a polynomial, call it p, of degree N that
has N roots counted with multiplicity according to The Fundamental Theorem of Alge-
bra. Enumerate them as z,...,zy. Since z = 1 is a root in p(z) — N/(—=1)N(x + 1)V
and N!(—1)V(1 + 1)~ # 0 one cannot have that x = 1 is a root in p(x). Consider the set

N
Z=[0,10n [ J{z}.
k=1
Put

0, for Z=0 ;

if Z = (), then there exists a number M > 0 such that p(z) > M for all x € ]0,1[. If on the
other hand Z # (), then now, there is a number M’ such that p(x) > M’ for all x € |xg, 1],

whenever xg > A. Eitherway, one has from (B.15)) and (B.16|) that

. {maXZ, for Z #£0

n

’f(n)(x)’n < M—l |n2n2 ™= | 1 n+1-4 B.17
™) S n! Z z—1] . (B.17)
B=1

In (B.17)) one has that as z " 1, then |1 —z| N\ 0; all the exponents {n+1—-5|5=1,...,n+1}
are non-negative, so one has readily that the function on the right-hand side of (B.17)) is
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decreasing on |0, 1[. Now,
n+1

|f (:E)|n 'n2n2 -1 n+1-—0 B.18
oy M| e (B

whenever z € |zg, 1[, 2o > A. Now,

)" (n) )|
limsup “———=—+— () = hmsup )l (@)l lze]l—el], fN(2)#£0
a1 |[fM)()]

| fN) ()]
) ()™
= $101m sup { ‘{f N)((;‘” | x € ]z, 1], f(N)(x) # 0}
n+1 "

< M 'pm2 hm Z\xo 1nti=s

= M lpmo’

< o0.

Therefore, according to Prop. [B.0.9] formula (B.14) is true. This means that |f™ ()" is

O(|f ™M (x)|) as  / 1. Now, Prop. [B.0.7 gives that max{|f™ ()|, |f™ (z)|"} is O f ™) ()|)
as © /' 1. This together with (B.12)) imply that

lim (@) < const - T (o) maxc{|) (@)L £ (@)]")

< + T . (n?4n—1) )
< const- i () (a)

Since lim, 1 j(z)|f™ (z)| = 0 for all n € N, one has in particular that

(M) (1) =
3}1/1111] (x) =0. (B.19)
Now, (B.7) and (B.19) imply that
hml]( )(x) = 0. (B.20)

Now that it is proven that the limit exists and equals zero, the only thing left is to show
that j (”)(1) exists and equals zero. The left-hand side derivatives of j are by definition given
by

(n—1) [(n—1)(1
() 1y _ e d (@) — (1)
A

At this point, the induction hypothesis will be used: since j™1 is continuous at z = 1 by
induction hypothesis, and (1) is differentiable on | — 1,1[, then in particular it must be
differentiable on ]z, 1[ and continuous on [z, 1] for every x € |0, 1[. The mean value theorem
now gives that there is a ¢, € ]z, 1[ such that

§ D (@) =5 0() = 5 ) (@ - 1),
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or equivalently,

— 4(n)
r—1 3" (e)
This implies that
in=1)(p)y _ j(n=1)(1
z,/'1 rz—1 z,/'1

provided that the limits exist. Since lim, 1 j (”)(cx) = lim, ~ j (n) (z) = 0, we infer that

(0 (1—) = Tim ™ (e) —
3 (1=) lin 7 (cz) =0. (B.21)

The same argument applies to the right-hand derivative, and we get that

i™a+) =o0. (B.22)
The formulas (B.21)) and (B.22) imply that (™ (1) exists with
JM() =M (1-) =i (1) =o. (B.23)

Now, (B.20)) and (B.23) imply that

7™ (1) = lim j™(x),

x—)l

which says that 7 is continuous at z = 1. It is now proven that j is continuous at z = 1 with
4(1) = 0, and that if it is the case that 71 (1) exists, 71 (1) = 0, and j*~Y is continuous
at 2 = 1, then it is also the case that j(™ (1) exists, (1) = 0 and j™ is continuous at
x = 1. By induction,

VneN: j(”)(l) exists, j(”)(l) =0 and ;™ is continuous at = = 1.

Consequently, j is smooth at z = 1. |

Lemma B.0.12 Let j be as in Lemma|B.0.11 Define for e >0, je : R — R by
jew) = 117 e 3 ).
Then je > 0, je € C®(R), supp je = [—¢€, €] and [ je(x)dr = 1.
Proof: je > 0: Obvious.
Je € C*°(R) : Since j is smooth by Lemma [B.0.11} one has that
(n d" i 1., e e (n), —
i) = —— (115 gy (e ) ) = 11 e ),

SO je is smooth.

supp je = [—¢,¢] : Given x € [—¢, €], then e 'z € [~1,1]° = (supp j)¢, which is open, so
there exists a § > 0 such that B(e~'z,d) C (supp j)¢; therefore j(B(e 'z,)) = ||j||;11(]R)e_l .
j(B(e7tz,9)) = je(B(z,€6)) = 0, so x € (supp je)¢. Given x € (supp j.)% then there is a
0 > 0 such that B(z,d) C (supp j)¢; therefore j.(B(z,0)) = 0, or equivalently: ]|j|\£11(R)6_1 .
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j(e 1B(z,0)) = j(B(e 'z,e716)) = 0. This implies that e 'z € (supp j)¢ = [~1,1]°. Hence

x € [—€, €’

fR Je(x)dx = 1: We have that

/R Je(z)dz = /R 17171 gy i (€ ) da = |11 gye ™ /]R j(e  a)de

— Uil [ sy
= 1.

A function j. defined as above is called a 'mollifier’, and € is a corresponding 'radius of mollifi-
cation’. A sequence of mollifiers {jy, } >0 is called a 'regularizing sequence’, or an ’approximate
identity’. The reason for name approximate identity is that as € \, 0, then f#j. — f in L'(R).
Embedding L*(R) into D'(R), one has that § = D' — lime g je, and f * 6 = f, where 4, the

delta distribution, plays the role of the identity element in the algebra (D'(R), *).

Lemma B.0.13 Let M > m > 0. There exists a function ¢ € C*°(R) such that ¢

| = M,M[¢, o =0 on [-m,m], and 0 < ¢ < 1.

1 on

Proof: Denoting by X|— L (M), (Mm)[e the characteristic function of | — (M +m), (M +

m)[¢, we then define the function ¢ : R — R by

#@) = (Ir-m) * X yartm yarmre) @)

= /RJ;(M—m)(l’ = X)L (ar4m), L (M) (e (D)2

HJHZ}(R) x—t
= j <(t)dt
/]R;(M—m)‘7 T —m) ) O-drem). j o ()

—3(M+m) ||J||211(R) ) z—1
= / 1 J\1 dt

o il -
/ i E® i vt dt.
Lm4m) 3(M =m)” \ (M —m)

2

¢ =0 on [-m,m] : Given xg € [—m, m]; assume first, that z¢ €] — 0o, m]; then

-t _ _m—t m— (M +m)

SO —m) = 5(M—m) = 5(M —m)

(B.24)

(B.25)

when t > (M + m). Therefore, j(Ltm)) = 0 when ¢ > £(M + m), since supp j = [—1, 1].

(M-

N
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Consequently, the integral in (B.25)) is equal to zero. Assume now, that z¢ € [—m, oo[; then

Tt _ —m—t _ —mo (1)
s(M—m) = $(M—m)  (M—m)
2 2 2
- —m—i—%(M—i—m)_%(M—m)
- %(M —m) %(M —m)
= 1,
when t < —%(M+m). Therefore, j(%(’j&jn)) = 0when t < —%(M-+m), since suppj = [—1,1].
Consequently, the integral in (B.24]) is equal to zero. It is now shown that z¢ € | — co,m| N
[—m, oo = [~m, m] implies that p(z) =0, so ¢ =0 on [—m,m].

p=1on]— M, M[ Assume without loss of generality, that xo € [M, co[. Then

1
xo —t M —t M+ (=t) M+3(M+m)

%(M*m)z%(M—m):%(Mfm)— T —m)

when ¢t < —1(M + m). Therefore, j(;ﬁ&:tm)) =0 when t < —1(M + m), since supp j =

[—1,1]. Consequently, the integral in (B.24) is equal to zero. In order to compute the integral

(B.25), a change of variables is convenient. Take g : R — R, g(t) = 1 (f\‘/)[:;l) with Jacobian
2

_ . —L(M+m)
Jg(t) = %(Tim) With T = [1(M + m), oc], one has g(T) = }—oo, %} Now the
assumption zo > M implies that g(T') O | — oo, 1]. The integral (B.25]) can now be calculated:

integral (B.25]) is equal to

/oo H]HZ}(R) i To— 1t &t
s 30T —m) \ 301 = m)

2

I35,
= | TNl (G o 9) ()| Jgldt
| s G ol

= T = J\y)ay
g(M—m) " Jyer)

1
— illh [ iy since swppj=[-1,1
—00

— il [ iy, since suppj = [-11] and 50
=1

Y

so ¢(zg) = 1. Consequently: ¢ =1 on | — M, M[°.

0 < ¢ <1 : Assume without loss of generality that zo € |m,M[. Now, putting 71 =
zo+%(M+m)
%(M—m)

C [1, 00], since ME3™ > 1. Similarly, putting Tb = [4(M +m), o[ one

,00|; the assumption x¢ > m now gives
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_1
gets g(Ts) = }—oo, %]; the assumption xp < M now gives that g(7) C | — oo, 1].
2

—5(4m) 4] 71 ¢
2 LY(R) . To
o(ro) = / J dt
oo %(M—m) %(M—m)

o0 HjHBl(R) . To—t
i Jl 1 dt
(M+m) 3(M —m)” \ 3(M —m)

o
1
2
157k,
= —= TG 0 g)(8)] | dt
| T sl G o 901
17k
+ /JljogtJdt
. %(M—m)’ gl (G og)(t)]Jyl
il
LR / J(y)dy + / J)dy
%(M—m) 7 g(T1) 9(T2)
=1
— 0_|_””7”L1(R)|Jg|—1/ j(y)dy
(M —m) o(T)

< 1

Furthermore, ¢ > 0, since j > 0. Therefore 0 < ¢ < 1.
o] . 1 / . .
p € C®°(R) : Clearly, X}—%‘(M—i-m),%(M—l-m)[C €L, (R)yCD (R)O,Oby Ler'nma B.0.12 I (M-m) €
D(R). By [14], Th. 6.30, T (M —m) * X)L (M4m), L (M-m)[e € C*(R) with
D"(J%(M_m) * X]—%(M—&—m),%(M—f—m)[C) = (Dnj%(M—m)) * X)— L (M4m), 5 (M+m)[e-
[ ]

Notation B.0.14 The function ¢ constructed in the proof of Lemma[B.0.13 will occasionally
be denoted by m -



Appendix C

List of symbols

Symbol  Description

Sesquilinear forms
5, t Sesquilinear forms
D(t) The domain of t
Ret The real part of t
Imt The imaginary part of t
t* The adjoint form of t
IIt]] The norm of t
h The lower bound of the symmetric form t
o(t) The numerical range of t
un - u  The sequence {un} is t-convergent to u
(-])p The inner product h + 1
Il ¢ The norm induced by (-|)
t The closure of t

Function spaces
H A Hilbert space
B(H) The C*-algebra of bounded operators on the Hilbert space H
B(X,Y) The algebra of bounded operators from between the Hilbert spaces X and Y
D(R) Test functions; smooth functions defined on R with compact support
D'(R) Distributions; continuous linear functionals on D(R)
H™(R)  The L2-based Sobolev space of order m
L} (R)  The vector space of locally integrable functions defined on R
Cs(R)  Continuous functions on R that vanish at infinity
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