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Abstract
One of the goals for performing tra�c monitoring is to avoid traf-
�c accidents. It would not be feasible to use a human operator to
monitor a tra�c scene because accidents are rare events. There is
a growing interest in automating this process, and visual surveil-
lance systems are paid much attention due to their non-intrusive
nature.
This thesis addresses the tracking issue, which is a cornerstone
of all visual surveillance systems. The overall goal is to use the
tracking information to detect potential tra�c accidents before
they occur. A requirement is thus that the system must be able
to track both vehicles and humans reliably. There is only a lim-
ited amount of work reported on tracking of both vehicles and
humans.
The developed system is a multi-view tracking system based on
the planar homography. Foreground segmentation for each view
is performed using the codebook method, which is capable of
adapting to illumination changes. The tracking of objects is per-
formed in each view using bounding box overlap, and occlusion
situations are resolved by probabilistic appearance models. The
following correspondence of tracks between views is carried out
by combining and modifying prominent methods for humans and
vehicles. In the human case, the principal axis method is ex-
tended to handle groups. In the vehicle case, the footage region
is applied, and special attention has been put on solving occlusion
situations.
Due to the use of multiple views and the correspondence of tracks
it is possible to calculate an accurate view invariant representa-
tion of the objects. This representation is suitable for performing
event recognition and assessment of the danger level of the situ-
ation. The goal of this is to detect an accident before it occurs,
and an alarm is raised as a �rst step of preventing the accident.
The developed system is tested over several hours of uncon-
strained data on di�erent times of the day, under di�erent
illuminations and di�erent camera con�gurations. The system
gives a solid foundation for tracking objects, and demonstrations
using analysis based on the view invariant representation of
objects show that the system is able to detect dangerous
situations, e.g. near collisions between vehicles and humans.
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Preface

This thesis documents the work performed by Paul Toft Duizer and Dennis Mølholm Hansen
for the degree of M.Sc.EE during the 9th and 10th semester at the specialization of Com-
puter Vision and Graphics at Aalborg University, Denmark. The research for this thesis was
mainly carried out at the Computer Vision and Robotics Research laboratory (CVRR lab) at
University of California, San Diego (UCSD) in USA. The study abroad lasted seven months
from November 8th 2006 to June 10th 2007. From June 12th 2007 to August 16th 2007 the
research was completed at Aalborg University.
The thesis covers both 9th and 10th semester, but it was not until the middle of January 2007
that the subject of the thesis was established in co-operation with the CVRR lab. The �nal
thesis de�nition was established in the middle of March 2007.
In the two months period from arriving at the CVRR lab to establishment of the thesis subject
we worked on a di�erent subject. We worked on a continuation of our 8th semester project
where the subject was to perform automatic annotation of humans in indoor surveillance
video recordings. The developed system was extended by new methods, existing methods
was re�ned and new tests of the system was performed. As a part of the work a dataset was
developed, which is now available for download at http://www.cvmt.dk/projects/Hermes/
head-data.html. Our work resulted in the publication �Automatic Annotation of Humans
in Surveillance Video�, which was submitted and accepted for oral presentation at The First
International Workshop on Video Processing and Recognition (VideoRec'07). The publication
is enclosed as Appendix G.

Reading Guidelines

Literature references are in the thesis indicated with brackets, e.g. [Hu et al., 2006]. The
position of the reference determines which speci�c part the reference relates to. If the reference
is positioned before a period, it relates to the previous sentence. If the reference is positioned
after a period, it relates to the previous section. The bibliography with references to all the
literature used can be found at the end of the thesis.
Equations and formulas use the notation a for vectors and A for matrices. All equations are
supplied with a number in the right margin for reference.
Videos, test results, source code and other project related �les are located on the attached
DVD. A reference to a �le on the DVD is given as e.g. (} /application/con�g_decription.doc).
A reference to a folder on the DVD is given as e.g. (} /application/ ).

Paul Toft Duizer Dennis Mølholm Hansen
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Chapter 1
Introduction

With an increasing amount of vehicular tra�c the number of tra�c related accidents is ex-
pected to increase unless measures are taken to enhance tra�c safety. Tra�c related deaths
are currently the fourth most occurring reason for reduction in years of life in Denmark
[Færdselssikkerhedskommisionen, 2000]. In [Færdselssikkerhedskommisionen, 2000] the na-
tional Danish goals for tra�c safety are de�ned for the period of 2001 - 2012. Based on the
accident rate for 1998, the overall goal is a 40 percent reduction of tra�c related deaths and
injuries. To achieve this goal, a strengthening of the research within tra�c safety is essential.
One of the research themes with highest priority is the applicability of intelligent technology
to increase tra�c safety [Færdselssikkerhedskommisionen, 2007].
The use of cameras and computer vision to monitor a tra�c area also referred to as visual
surveillance can be used to detect illegal acts and detect accidents before they happen and
take needed measures to prevent the accident. A visual surveillance system has several ad-
vantages. The cost of the cameras is relatively low and with only little disruption of the
tra�c during installation and maintenance [Kastrinaki et al., 2003]. Furthermore, cameras
are a non-intrusive measure to monitor the tra�c activities.
A single camera sensor has the ability to cover a large area, but covering all the tra�c e.g. in
an entire city would require many cameras. Applying only passive visual surveillance would
involve many human operators to monitor the tra�c. This is a very tedious task and an
ine�cient solution. The aim of visual surveillance using computer vision is to accomplish the
entire surveillance task as automatically as possible. Given that the visual surveillance system
is operational 24 hours a day, a large amount of data describing the tra�c is generated. This
data can be used to obtain new knowledge about tra�c safety, but could also be used in a
non-safety related situation, e.g. using the data to do tra�c �ow analysis for tra�c planning.
Furthermore, the stored data and especially the video could be used by the police in crime
related cases.
The use of computer vision as an intelligent technology to help increase the tra�c safety is the
goal of this thesis. The initial problem in this thesis can therefore be formulated as follows:

How can computer vision-based visual surveillance be applied in order
to increase tra�c safety?
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Chapter 2
Problem Analysis

This problem analysis investigates the problem area of tra�c surveillance
and the use of a computer vision system to monitor the tra�c. The analysis
introduces the concept of situation awareness and a general framework for
visual surveillance systems. Computer vision challenges and the related
work are addressed afterwards. This results in the thesis de�nition.

2.1 Situation Awareness

Before describing the problem area the term situation awareness is introduced. Other work
may use a di�erent term such as �intelligent� or �smart-space� for basically the same concept.
A simple explanation of situation awareness is �knowing what is going on around you�. The
research within this area studies how humans perceive, structure and use knowledge from the
immediate environment. The most established de�nition is given by [Endsley, 1988], where
situational awareness is divided into three levels. Level 1 is to perceive the elements in the
environment. In level 2 the knowledge of these elements is used to create a holistic picture to
understand the signi�cance of objects and events. Level 3 is using this understanding to do a
projection of future scenarios, which makes it possible to take a certain preventive action.
This is a general and abstract de�nition. An example of situational awareness taken from
everyday life is when a pedestrian is crossing the street. First of all, the person about to cross
the street has to locate the road he is about to cross and any potential cars on the road. By
using his knowledge about the cars (how fast they drive and their location on the street) he
can decide whether or not to cross the street. He utilizes situation awareness by stopping and
waiting for the cars before crossing. A computer vision system for visual surveillance should
be able to perform similar reasoning, if it should be used for increasing tra�c safety.
This requires that the computer vision system is able to identify the objects and know what
they represent. Level 3 situation awareness is useful when trying to detect (and following
prevent) a car accident before it happens, but this is not achievable without the intermediate
steps of level 1 and 2.

2.2 Description of Problem Area

The problem area is given in locations with both vehicles and humans. Interesting locations
would typically be urban areas that are busy at some point during the day. According to
[Færdselssikkerhedskommisionen, 2000], the risk of a tra�c accident in urban areas is three

13



14 Chapter 2. Problem Analysis

times larger than in areas outside a city. Furthermore, 80 percent of all accidents involving
pedestrians or cyclists happen in urban areas. More speci�c urban location could be roads
with sidewalks, parking lots, intersections and bus stops. In Figure 2.1 some examples of
possible sites are given.

Figure 2.1: Examples of locations. Left: San Diego, USA. Middle: Reading, England.
Right: Barcelona, Spain.

Two overall object types exist within the problem area: humans and vehicles. Humans can
further be divided into pedestrians, bicyclists and humans riding a skateboard or roller skates.
Vehicles can similarly be divided into sedans, pickups, trucks and busses. More simply this
could be small and large vehicles. Other object types exists, such as animals and inanimate
objects like a baby carriage, but the focus is kept on humans and vehicles because they appear
more frequently and are more interesting within the given problem area.
In a location as described above, the pedestrians are most likely in transit. They may stop for
a red light, stop and wait for the bus or stop before crossing the street to get an overlook of the
situation. This does not necessarily mean that they follow a �xed movement pattern. They
may meet and stop to talk for a longer period of time. They may cross the road at any time or
simply turn around and go back. However, it is expected that pedestrians are mainly walking
along the sidewalk. Bicyclists and persons on skateboard or roller skates may also be on the
sidewalk or close to it. Pedestrians, cyclist and skateboarders interact di�erently, but in the
following the interaction of human objects is focused on the interaction between pedestrians.
An example of interaction between pedestrians is when they walk as a group. Two pedestrians
may meet and continue as a group or split after walking as a group. Pedestrians may also
interact in a more detailed level, e.g. holding hands or �ghting.
Vehicles are like pedestrians in transit and are expected to be on the road, but may cross
the sidewalk in order to get to a parking space or a driveway. However, the structure of the
environment may restrict the movement to only a few paths (assuming drivers of the vehicles
obey basic tra�c laws). Vehicles interact di�erently than humans; e.g. they do not form
groups like pedestrians, but typically drive one by one in a line. Exceptions from this is
e.g. overtaking vehicles. All in all, the movement pattern of vehicles is not as arbitrary and
complicated as that of pedestrians.
Interaction between vehicles and pedestrians are also possible. A car may pick up a pedestrian
or a bus may stop to drop o� several passengers. These kinds of interactions happens when
the vehicle in question is standing still. When vehicles are moving, the interaction is more of
a preventive character, e.g. a pedestrian stopping and waiting for a car to pass. Of course,
the vehicle may also stop allowing people to cross the street. A last example of person-vehicle
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interaction is the tra�c accident, where the vehicle hits the human. If the goal is to prevent
such accidents, the visual surveillance system should be able to exhibit situation awareness
by projecting the scenario before it happens. In order to preserve the integrity of the visual
surveillance system, the system must be able to distinguish between the di�erent types of
person-vehicle interactions and only raise an alarm in an unsafe situation. When an alarm
is raised adequate measures must be taken to avoid the accident, but since the focus is on
computer vision-based surveillance this is not included in the thesis.

2.3 General Framework of Visual Surveillance Systems

In order to take a deeper look into the structure of a visual surveillance system and the chal-
lenges of doing visual surveillance, it is advantageous to have a general framework as a starting
point. Several general frameworks are presented in the literature, e.g. in [Hu et al., 2004b],
[Moeslund et al., 2006] and [Valera and Velastin, 2005]. The framework presented by
[Hu et al., 2004b] is the most extensive of the aforementioned in the sense that it applies
to both single view and multi-view systems and covers both vehicles and humans. Further-
more, this survey is extensively used in the reviewed literature. Hence, the framework in
[Hu et al., 2004b] is presented in the following and is the main inspiration for the system
structure used in the thesis.
The main focus of the survey given in [Hu et al., 2004b] is object motion and object behavior.
In the survey, a general framework of visual surveillance in dynamic scenes is presented. This
framework is shown in Figure 2.2.
The framework consists of di�erent stages covering low-level vision, intermediate-level vision
and high-level vision. A visual surveillance application may not contain all the stages in the
framework. Likewise, stages may be added in an application. The stages of the framework
are described in the following.

Environment Modelling The process of detecting motion or segmenting foreground objects
involves environment modelling, motion segmentation and object classi�cation. To be
able to separate background and foreground, a model for the background or environment
is needed. The model makes it possible to determine, if a pixel or region in the frame
corresponds to background or a foreground object.

Motion segmentation Motion segmentation detects pixels or regions corresponding to fore-
ground objects using the environment or background model. These pixels or regions are
the focus for the later stages in the framework. Most segmentation methods make use
of either spatial or temporal information in the video sequence.

Object classi�cation The detected regions from the motion segmentation stage may corre-
spond to di�erent targets in the scene. In tra�c surveillance applications targets may
be humans and vehicles as described in Section 2.2. Hence, it is essential to classify
the detected regions. This is often in the literature considered as a standard pattern
recognition task.

Tracking Having segmented the foreground objects, visual surveillance systems track these
objects from frame to frame. Tracking foreground objects over time typically involves
matching objects in consecutive frames using descriptions of e.g. points, lines or blobs.
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Environment modelling

Motion segmentation
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identification

Camera 1

Fusion of Information from multiple cameras

Environment modelling

Motion segmentation
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Personal 
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Camera n......

Object classification Object classification

Figure 2.2: General Framework of Visual Surveillance Systems. Figure from
[Hu et al., 2004b].

The main problem related to the tracking stage is how to handle occlusion. By tracking
foreground objects the system is able to supply information on the history of the objects
in the video sequence.

Behavior understanding and description Following tracking is the problem of under-
standing object behavior. In this stage, analysis of motion patterns is performed to
produce high-level description of actions and interactions. The object history from the
tracking stage can be utilized in the interpretation of the object motion patterns. Under-
standing of behavior can simply be seen as classi�cation of time varying data. Typically,
the behavior is classi�ed as normal or abnormal.

Personal identi�cation This stage is at the same level as behavior understanding and de-
scription. In this stage, a known identity is assigned to the tracked object. In case of
surveillance of humans, biometric descriptions of e.g. the human face and gait can be
used. A di�erent approach is needed when assigning identities to vehicles. Given that
the vehicles have a license plate and it is possible to extract an image of the license
plates, it is rather straightforward to assign an identity to vehicles.

Fusion of Information from multiple cameras Segmenting foreground objects, object
classi�cation, tracking, behavior understanding and personal identi�cation can be ac-
complished using a single camera. However, using multiple cameras can overcome prob-
lems regarding occlusion and depth estimation of the objects. In this stage, the infor-
mation from the previous stages is collected. The information from the later stages is
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at a higher abstraction level and is well suited for information fusion. However, fu-
sion of lower level information may result in higher reliability of the overall system.
[Hu et al., 2004b]

2.4 Computer Vision Challenges

Knowing the general structure of a visual surveillance system it is now possible to focus on the
challenges related to visual surveillance. The goal for a tra�c monitoring visual surveillance
system is to be functional without any constraints on the given scene. To achieve this goal in
the described problem area, several challenges must be addressed. Dealing with unconstrained
environments involves the issues of changing illumination and handling multiple types of ob-
jects which interact in multiple di�erent ways causing both partial and fully occluded objects.
All together it becomes a highly complex task to interpret and keep track of information in an
unconstrained environment. The following lists the main challenges in building a computer
vision system for outdoor tra�c and pedestrians in an unconstrained environment.

• Camera setup
• Changes in the scene
• Multiple types of moving objects
• Occlusion
• Fusion of information
• Understanding the behavior

In the following, these issues are elaborated.

2.4.1 Camera Setup

The camera setup is very application dependent and at the same time it provides a possibility
to solve problems at an early stage. A camera can be stationary or moving, e.g. a PTZ camera.
Furthermore, the camera can be mounted on buildings, but work has also been reported on
cameras installed inside or outside the vehicle. An example is found in [Trivedi et al., 2005],
where a system capable of looking out of the vehicle and analyzing the vehicle's surrounding is
presented. Simultaneously, cameras are facing the driver inside the vehicle making it possible
to monitor the driver's behavior and intent. However, in the following only stationary cameras
mounted on buildings or lamp posts are considered. In Figure 2.3 three di�erent camera setups
are shown. The side view setup allows a good view of the persons making it attractive for
recognition of detailed human interaction, but an object moving close to the camera would
result in complete occlusion of the other objects. Compared to side view, the elevated setup
reduces the e�ect of occlusion while having a good view of the pedestrians' and vehicles'
appearance and at the same time gives a larger monitoring area. A camera would typically
be elevated to more than 2.5 meters in this kind of setup in order to be out of reach from
humans [Andersen et al., 2006]. By using the top view setup the occlusion problem would be
close to eliminated. However, the appearance of the pedestrians is lost and installation of a
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Top view

Elevated view

Side view

Figure 2.3: Possible camera setups. The di�erence is exempli�ed by two pedestrians
walking in close proximity.

top view camera might be impractical. For these reasons, most existing surveillance systems
use elevated cameras or side view cameras.
A second consideration closely related to the camera setup is the number of cameras used. A
wider monitoring area can be covered by multiple cameras, and multiple cameras have proven
e�cient in handling occlusion situations. A bus can cause complete occlusion of several
pedestrians in one view, but from another view all the pedestrians are visible.
Using many cameras with overlapping �eld of views increases the cost of the system and could
be impractical to install. It should be assumed, only a few cameras (2-3 cameras) are over-
lapping. Furthermore, because the computer vision system must be able to handle multiple
vehicles and pedestrians over a large monitoring area, a wide view seems more practical than
a narrow view. When using multiple cameras it should be considered how the cameras are
registered to make collaboration between views possible. If the camera registration can be
performed automatically and still yield reliable results the applicability of the system would
increase signi�cantly.
Other issues with using multiple cameras is how to match the objects between views, switch
between views as the object is leaving one view and how to fuse the data from multiple views.
Despite these issues, the advantages of using multiple cameras to cover a larger area and
resolve occlusion issues weigh more heavily.

2.4.2 Changes in the Scene

An outdoor surveillance system must handle signi�cant changes in illumination. During day-
time the most signi�cant light source is the sun. The illumination of the scene can change
drastically within a short period when a cloud passes the sun. Gradual and relatively slow
changes in the illumination also occur. Around noon the sun is very bright and causes strong
shadows. In the morning and evening the sun is not as bright, which results in longer, but
weaker, shadows. The gradual change and corresponding cast shadow is illustrated in Fig-
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ure 2.4. Arti�cial lights are a di�erent kind of light sources, which causes di�erent local
illumination. At nighttime arti�cial light is typically the only signi�cant light source.

(a) 9:10 (b) 13:10 (c) 16:07 (d) 17:53

Figure 2.4: The change in illumination over a nine hour period.

The background in the monitored scene is composed of static and non-static background
objects. Static background objects could be building, lamp posts and roads. Typical examples
of non-static background objects are vegetation, where trees and shrubberies are very likely
in the given problem area. Vegetation presents a bigger challenge because they move if it is
windy. The motion of vegetation could be confused with a moving region for a pedestrian
or a vehicle. Other examples of non-static background objects are advertisements display
with changing ads and objects deposited by humans. The latter could be luggage or a car
being parked and left by the driver. A visual surveillance system must not identify static or
non-static background objects as humans and vehicles.

2.4.3 Multiple Types of Moving Objects

In computer vision it is common to apply models when analyzing objects. In the tra�c
monitoring case the fact that humans and vehicles are di�erent objects must be taken into
consideration. The apparent shape of the objects viewed from a distance is an example of
the di�erence. The human shape is almost the same even though the human object is viewed
from the side or from the front. The shape of a vehicle is signi�cantly di�erent compared to
the human shape, and the vehicle shape when viewed from the side and from the back di�ers
signi�cantly. Furthermore, vehicles are rigid objects whereas humans are non-rigid objects.
This indicates that the models which apply to humans might not hold in the vehicle case.

2.4.4 Occlusion

The occlusion issue is closely related to interaction, since objects often occlude each other
during interaction. Occlusion can either be partial or complete, e.g. pedestrians walking in
a group often partly occlude each other, while a truck may fully occlude multiple people.
Another kind of occlusion is background occlusion, meaning that a static object like a lamp
post can cause occlusion if it is placed between the object of interest and the camera. At
a more detailed level self occlusion can occur, e.g. when the arm of a person occludes a
part of the body. Self occlusion is only an issue if detailed description of body interaction is
needed. As mentioned earlier, using multiple cameras can be used in resolving these issues by
providing a view where there is little or maybe no occlusion. If the visual surveillance system
must be able to obtain situational awareness, the tracking of the objects must not be a�ected
by occlusion.
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A problem related to occlusion is track initialization. In the described problem area, it is
very likely that pedestrians enter as group and stay as a group throughout the monitored
area. This complicates the task of creating tracks for each individual in the group. Many
existing systems require manual initialization to correctly track a group of persons. E.g.
[Kim and Davis, 2006] and [Qu et al., 2007] explicitly write that tracks are created manually
in such a situation.

2.4.5 Understanding the Behavior

In the general framework presented in Section 2.3 behavior understanding and personal iden-
ti�cation is on the same level. However, when monitoring tra�c the identity of the objects
might not be of interest or must be hidden. The identity might only be of interest when
analyzing a certain event post mortem, e.g. identify the car in a hit-and-run accident. Be-
havior understanding is of greater interest in relation to accident prevention. Often the goal
is to detect normal or abnormal behavior or to project the states of the objects to detect
near collisions. In case of a dangerous situation an alarm should be triggered. This requires
some model or representation of the behavior. Furthermore, the behavior is exhibited over a
time period between objects and the model or representation must therefore incorporate this
temporal relationship.
In a wide camera surveillance system it is most likely only possible to extract the trajectories of
the objects. The trajectories then forms the basis for the assessment of the danger level of the
situation. The representation of the trajectories should also be considered. The representation
can be view variant or view invariant. In a view variant representation a vehicle driving far
away from the camera has smaller visual displacement in that view than a vehicle closer to
the camera driving at the same speed. A view invariant representation does not have this
disadvantage caused by the perspective e�ect. Therefore, a view invariant representation is
the most general representation and well suited for doing analysis of interaction of objects,
which is demonstrated in [Park and Trivedi, 2006].
It might be of interest to have an understanding of the objects' behavior on a �ner level.
A person about to cross the road without looking to either side of the road is a potential
dangerous situation. This requires that it is possible to detect if the person has looked to both
sides, which might be hard if the camera is located far away from the human object. However,
given that it is possible to extract a �ner description of the motion (e.g. using multiple cameras
o�ering a good view of the object) this could be incorporated in the assessment of the danger
level of the situation, thus reducing the number of falsely triggered alarms.

2.5 Partial Conclusion

In the previous, the problem area has been described, a general framework has been introduced
and computer vision challenges have been identi�ed. Because of the many challenges, the
related work within visual surveillance is large, and to keep focus the scope must be delimited.
It is chosen to focus on systems using stationary cameras mounted on e.g. buildings or
lamp posts. Furthermore, systems using multiple views are addressed, because these systems
provide a larger monitoring area and is also e�cient in resolving occlusion issues.



2.6 Related Work 21

2.6 Related Work

In this section the related work within visual surveillance of tra�c is reviewed. A general
framework of visual surveillance system is introduced in Section 2.3. The framework is di-
vided into several stages, and reviewing the work related to each individual stage is a rather
comprehensive task; the review of related work to the individual stages is carried out when
describing the individual components of the system later in the thesis. The focus is in the fol-
lowing on complete systems and how they resolve some of the challenges in a tra�c monitoring
application. This is followed by a review of multi-view systems.
The interest in visual surveillance within the research community is large. This is evident by
the IEEE workshops, IEEE conferences and special journal issues focusing solely on visual
surveillance. Several surveys exists which o�er a �ne introduction to the subject. In this work,
the surveys found in [Hu et al., 2004b], [Moeslund et al., 2006], [Kastrinaki et al., 2003] and
[Valera and Velastin, 2005] have been widely used. The survey presented in
[Moeslund et al., 2006] focuses on human motion capture and analysis and reviews the re-
lated work in the period from 2000 to 2006. Within this period more than 350 research
papers have been published on this subject. [Kastrinaki et al., 2003] presents a survey on 128
publications of the research related to tra�c applications with the focus on vehicles. The
amount of work focusing on either monitoring of humans or monitoring of vehicles is large,
but the amount of work focusing on monitoring of humans and vehicles simultaneously is
relatively small.
The limited research done on monitoring both humans and vehicles is exempli�ed in the
survey by [Valera and Velastin, 2005]. The survey describes the current state-of-the-art in
the development of automated visual surveillance systems with the focus on complete systems
developed within the academic research community or for commercial use. In this survey only
four systems monitor both humans and vehicles. Only two of these systems use multiple views.
Other systems reviewed in [Valera and Velastin, 2005] might also track humans and vehicles,
but these systems do not assign an object type to the tracks, e.g. �human� and �vehicle�.
To enhance situational awareness this information is required in order to understand the
signi�cance of the objects and events (see Section 2.1). Hence, these systems are of little
interest for this application. In the following review of work, the focus is on three visual
surveillance systems which monitors both humans and vehicles and are able to distinguish
humans from vehicles.

System by [Collins et al., 2000] One of the renowned visual surveillance systems is the
Video Surveillance and Monitoring (VSAM) project. The project lasted three years,
and the �nal report is presented in [Collins et al., 2000]. The purpose of the system was
to develop automatic video understanding technologies that enable a single human op-
erator to monitor behaviors over complex areas such as battle�elds and civilian scenes.
The VSAM system models the outdoor environment and segments moving objects from
the background by combining adaptive background subtraction with a three-frame dif-
ferencing technique. All moving objects are classi�ed into four classes: single human,
vehicle, human group and clutter. VSAM also performs �ner classi�cation of vehicles
such as UPS truck, FedEx truck and police car. The moving objects are tracked us-
ing a combination of positional and template matching. VSAM performs gait analysis
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of humans to distinguish running humans from walking humans. The system utilizes
multiple cameras and calculates each object's geolocation using a terrain map. This
makes it possible to make a 3D description of the objects, which can be passed from
one camera to the next.

System by [Stau�er and Grimson, 2000] A visual surveillance system monitoring vehi-
cles and humans is presented in [Stau�er and Grimson, 2000]. The goal of the system
is to detect patterns of motion and interaction demonstrated by the objects in a site
over long time intervals using a single camera. The objects are segmented by creating
a model of the background using mixture of Gaussians. The tracking of objects uses
a linearly predictive multiple hypotheses tracking algorithm which breaks tracks when
objects interact. This is due to the following classi�cation system requirement of track-
ing sequences containing only a single object. The classi�cation system is based on a
co-occurrence matrix to hierarchically classify both objects and behaviors. The system
is able to classify tra�c activities into directions in the site and also where in the site
(e.g. on the road or on the sidewalk). Using the silhouette objects are furthermore clas-
si�ed as people, groups of people, cars or clutter. Preliminary work has been performed
on detecting abnormal events.

System by [Park and Trivedi, 2006] The system presented in [Park and Trivedi, 2006]
focuses on the interaction between persons and vehicles using multiple cameras. In
[Park and Trivedi, 2006] moving objects are segmented from the background using mov-
ing window-based multi-frame di�erencing technique. The resulting foreground masks
are transformed into a planar homography domain, where the moving objects are
tracked. The planar homography constraint is exploited to extract view-invariant object
features such as the footage region and velocity of objects on the ground plane. The
system utilizes a spatial-temporal activity space based on the theory of personal space
in social psychology in the analysis of the person-person interaction and person-vehicle
interaction. An example of person-vehicle interaction using the view invariant repre-
sentation of the objects is shown in Figure 2.5. The system can be used to detect near
collisions and crowd movement analysis in wide view areas.

2.6.1 Review of Multi-View Visual Surveillance Systems

The above focused on tra�c monitoring of both humans and vehicles, but as already stated
most work focus on either humans or vehicles only. In this section the focus is on multi-
view systems which may not cover both object types. Using multiple views is relevant for
systems monitoring tra�c because it provides a larger viewing area and is e�cient in resolving
occlusion issues. However, applying multiple views also introduce some issues. According to
[Hu et al., 2004b] some of these issues are installation, camera registration, object matching,
switching and data fusion. The issue with installation is the task of covering the entire scene
with the minimum of cameras. This issue depends heavily on the speci�c scene.
Some issues are related such as the issue of object matching between views depends on how
the cameras are registered. Other object matching approaches can be used if the full camera
calibration is available compared to when no information of the cameras are available. In
the following, the focus is on how the reviewed systems deal with these issues. The following
systems mainly focus on tracking of objects which is the most dominant research area in multi-
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(a) View 1 (b) View 2

(c) Planar homography domain (d) Spatial-temporal activity space analysis

Figure 2.5: Person-vehicle interaction analysis by [Park and Trivedi, 2006]. The ve-
hicle and human is tracked in the view invariant planar homography domain as two
blobs. Near collision detection is achieved using the spatial-temporal activity space.

view systems. Two overall approaches can be identi�ed in the reviewed literature; recognition
based methods and geometry based methods. The �rst mainly utilizes the color of the tracks
in matching the objects between views. [Orwell et al., 1999] and [Krumm et al., 2000] are
examples on work using color-based tracking where the color histograms is applied when
matching the people in di�erent views. This might be the only option when cameras are not
overlapping, but even with overlapping cameras the appearance of the same object might be
reproduced very di�erently in the di�erent views.
The second approach is the geometry based methods. An example is found in
[Mittal and Davis, 2003], where human tracking in complex scene with severe occlusion is
the focus. The humans are segmented using the Bayesian classi�cation rule, and data from
multiple cameras are fused to estimate the humans on the ground plane. Another example of
the geometry based method is found in [Park and Trivedi, 2006] where tracking is performed
in the view invariant planar homography domain. When using geometry based methods,
registration of the cameras is required.
Works where the two approaches are combined are presented in the work by [Kang et al., 2003]
and [Chang and Gong, 2001]. [Kang et al., 2003] uses both stationary and moving PTZ cam-
eras. This work is based on probabilistic information fusion using color histogram in a polar
representation and by predicting the object position using a Kalman �lter.
[Chang and Gong, 2001] performs tracking of the objects based on Bayesian belief networks
where �ve modalities are fused. The three geometry based modalities use epipolor geometry,
homography and landmarks and the recognition based modalities use the height and color of
the people.
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When reviewing the most recent literature it was found that the work using the geome-
try based methods are preferred and also presents the best results. However as explained
earlier, little work is done on monitoring both humans and vehicles simultaneously, and all
the methods mentioned above, except one, only consider the human case. The exception is
[Park and Trivedi, 2006] where the objects are tracked using the footage region. Objects oc-
cupying a larger area on the ground plane results in a larger footage region in the homography
domain. Since humans are signi�cantly smaller than vehicles there are some issues using this
method. The footage region is also used in [Khan and Shah, 2006], but here the goal is to track
individual persons interacting in dense crowded scenes. According to [Khan and Shah, 2006]
the footage region is vulnerable to shadows and might falsely detect a person. The authors
solve this issue by adding cameras and use up to four cameras to monitor an area of 5 × 5
meters.
As stated earlier in this analysis, when monitoring tra�c scenes a larger area should be
covered, and having four overlapping cameras does not seem plausible. Furthermore, in
case the feet of the persons are not detected it is not possible to detect the person by the
footage region method. These issues indicate that the footage region is not a robust human
tracking method. However, in the vehicle case the footage region performs well as reported
in [Park and Trivedi, 2006]. This is because vehicles are signi�cantly larger than humans and
occupy a larger area on the ground which makes the footage region more robust in the vehicle
case. This is illustrated in Figure 2.5(c), where the large blob is the vehicle and the small
blob is the human.
A more robust approach is needed when monitoring humans. Two often referenced systems on
tracking of partly occluded humans using multiple cameras is the work by
[Mittal and Davis, 2003] and [Dockstader and Tekalp, 2001]. [Dockstader and Tekalp, 2001]
fuses independent observations from multiple cameras using a Bayesian network and produces
the most likely vector of 3-D state estimates given the available data. Both works require full
camera calibration and is only used in indoor scenes. According to [Valera and Velastin, 2005],
full camera calibration is a resource-consuming process and a skill-demanding task in practice,
especially in outdoor scenes. [Kim and Davis, 2006] is related to the work in
[Mittal and Davis, 2003], but does not require the full camera calibration, only the planar
homography is required; the planar homography of a scene is easier to recover compared to
the full camera calibration. Matching between views in [Kim and Davis, 2006] is performed
using the so-called principal axis method and is incorporated into a particle �lter framework.
The method of the principal axis is presented in [Hu et al., 2006] where it is used di�erently
to track humans. Both [Kim and Davis, 2006] and [Hu et al., 2006] present tracking results
in outdoor scenes. Compared to the footage region, the principal axis is robust to some mis-
detection of the human body and is able to locate the position of people even if they are
partly occluded in all views, but the principal axis can not model vehicles.
In conclusion, two interesting approaches have been identi�ed: the footage region method
and the principal axis method. Both methods are geometry based methods and only requires
the planar homography. There is a tendency in the latest publications towards preferring the
use of planar homography instead of the more traditional full camera calibration, because the
homography is easier to recover. The footage region method is not as robust in the human
case as in the vehicle case. The principal axis method is a robust method in the human case,
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but does not apply in the vehicle case. Combining the two methods could therefore increase
the performance. Furthermore, such a combination has not been reported in the literature.

2.7 Thesis De�nition

The problem analysis has identi�ed several requirements for a visual surveillance system with
situation awareness for monitoring tra�c. A visual surveillance system consists of several
stages as explained using the general framework introduced in Section 2.3. The output from
lower-level stages are given to higher level stages making each stage dependent on the output
from a lower level stage. Developing a visual surveillance system requires that the higher-
level stages are build upon a robust set of lower-level stages. In this thesis the focus is put
on building that foundation using multiple cameras which make it possible to cover a large
monitoring area and has been e�ciently applied in related work to resolve occlusion issues.
The main goal for the thesis is given below.

The goal is to enhance automatic situational awareness by building a
system capable of robustly tracking humans and vehicles through their
activities and interaction in an unconstrained outdoor environment us-
ing multiple surveillance cameras.

Using the level terms of situational awareness introduced in Section 2.1, this work focuses
mainly on level 1 and in some aspects level 2. Based on the �ndings in the problem anal-
ysis, a set of secondary goals are given which further de�nes the scope of the project. The
delimitations and assumptions used in the work are listed next.

2.7.1 Secondary Goals

The following lists secondary goals which are derived from the �ndings in the problem analysis.

• The system must operate with elevated cameras.
• The system must be able to distinguish humans from vehicles.
• People move in groups and it is a goal to be able to distinguish a single human from a

group of humans. Furthermore, individuals must be tracked in the group.
• Full camera calibration must not be used.
• The footage region method presented in [Park and Trivedi, 2006] must be combined

with the principal axis method presented in [Hu et al., 2006].
• The system must be able to extract a view invariant representation of the objects. This

representation is well suited for analyzing the objects' interactions and can be used for
detecting an accident situation.

• The tracking result should be available with little or no delay. Otherwise, a possible
accident situation is �rst detected after it has occurred.1

1This goal is not the same as the system must perform in real-time.
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2.7.2 Delimitations and Assumptions

The following lists the delimitations or assumptions used in the thesis.

• Humans are assumed to be walking upright. People on bikes, roller skates or skateboard
are not explicitly addressed.

• The ground is assumed to be planar and views are assumed to be overlapping. This
restricts the monitored area. The footage region method and principal axis method both
uses planar homography for camera registration and hence assumes a planar ground
plane.

• Arti�cial lights are not considered. The system is only expected to track objects during
daytime, where the sun is the dominant light source. The reason being that most tra�c
is present at daytime.
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System Overview

With the task given in the thesis de�nition, this chapter gives an overview
of the applied system structure. The system is divided into modules, and
the remaining report re�ects the chosen system structure.

3.1 System Overview

This section describes the applied system structure. The structure is based on the general
framework presented by [Hu et al., 2004b] and is described in Section 2.3 on page 15. The
system consists of four types of modules and is shown in Figure 3.1. For each camera input
a foreground segmentation module and a single view tracking module are created. Only a
single correspondence module and view invariant module exists in the system. The structure
is shown for a two camera setup, which is the setup used in the thesis.

Cam 1

Cam 2

Foreground 
segmentation

Single view 
tracking

Correspondence
View invariant 

analysis

Foreground 
segmentation

Single view 
tracking

Database storage

End user

Figure 3.1: Overview of the system showing the individual modules.

The following description explains the structure bottom-up, meaning starting from the in-
put from one camera to the output given to the end user and database. The cameras are
synchronized. For each camera input moving objects are segmented using the foreground seg-
mentation module, and the moving objects are tracked using the single view tracking module.
The tracked objects in each separate view are matched in the correspondence module. The
tracking performed in the single view tracking modules yields a view variant representation
of the objects, but given that the ground plane coordinates are known the correspondence
module provides a view invariant representation of the objects. The view invariant represen-
tation can be used to perform view invariant analysis of the objects and their actions and
interactions and thus identify normal and abnormal situations. This is carried out by the
view invariant analysis module. The output from the system is the track history for each
object in the scene along with the result from the view invariant analysis. The track history

27
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includes both the spatial-temporal history and an object classi�cation for each track. The
output of the system is displayed on a monitor to an end user who can react on the situation.
Furthermore, the output is stored in a database; in the current implementation as a single
�le for each tracked object.
It is a goal to combine the footage region method and the principal axis method as stated in
Section 2.7.1 on page 25. This is re�ected in the chosen system structure where single view
tracking is performed before fusion of information from other views. This is a prerequisite
for using the principal axis method as introduced in [Hu et al., 2006]. The footage region
method as used in [Park and Trivedi, 2006] does not apply single view tracking, but is needed
in combination with the principal axis method.

3.2 Readers' Guide

In the following, a chapter is devoted to the handling of camera registration issue and a chap-
ter to each module in the system except the view invariant analysis module, re�ecting the
chosen structure of the system making the order of the following chapters: Camera Registra-
tion, Foreground Segmentation, Single View Tracking and Correspondence of Objects. Each
chapter describing a module covers analysis, design and test of the module. Following these
chapters, the system is tested and the results are discussed in Chapter 8. The task of the view
invariant analysis module depends on the speci�c application. In Chapter 9 event recognition
using view invariant analysis of the objects is introduced. The event recognition is used to
demonstrate and evaluate the underlying tracking system with regards to detecting a tra�c
accident before it occurs. The thesis is ended by a conclusion and outlook.
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Camera Registration

The following deals with registration of the cameras for plane-to-plane map-
ping in a multi-view setup. Initially, an analysis of camera registration
approaches is presented. This is followed by conceptual design and presen-
tation of the obtained results.

4.1 Analysis

The task of the camera registration is to do mapping of points on the ground plane between
views since this is a prerequisite of both the footage region method in [Park and Trivedi, 2006]
and the principal axis method in [Hu et al., 2006]. As stated in Section 2.7.2 on page 26 it is
assumed that the ground plane on which objects move is planar. Furthermore, it is speci�ed
under the secondary goals in Section 2.7 on page 25 that it is a goal not to use full camera
calibration. Therefore, an approach for doing plane-to-plane mapping without full camera
calibration must be found.
Plane-to-plane mapping between the image planes for each camera can be calculated algebraic
using perspective transformation also called homography mapping [Hartley and Zisserman, 2004].
A sketch of the mapping is presented in Figure 4.1. The �gure shows a point Xπ on the ground
plane π within the shared region of the two cameras. The projection of Xπ in each view is
mapped between the two image planes using the homography. The homography is represented
by a 3 × 3 matrix H. With H12 matrix determined, the mapping from view 1 to view 2 is
straightforward. H21 is obtained by inverting H12 for mapping in the opposite direction.
The homography matrix can be computed from the relative position of the two image planes

Xπ

x1 x2

π

C1 C2

H12

View 1 View 2

Figure 4.1: Mapping of a ground plane point Xπ between two views. The projection
of Xπ in view 1, point x1, is mapped to the projection of Xπ in view 2, point x2, using
the homography matrix H12. C1 and C2 are the respective camera centers.
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and camera centers [Criminisi et al., 1999]. However, it can also be computed directly us-
ing corresponding primitives between the two planes, such as points, lines, polygons, con-
tours, curves or textures [Jain and Jawahar, 2006]. However, since point-to-point corre-
spondence is widely used and successfully applied in related work such as [Hu et al., 2006,
Park and Trivedi, 2006] the homography estimation is based on point correspondence.
H has eight degrees of freedom and is only de�ned up to a scale [Hartley and Zisserman, 2004].
From each pair of corresponding points two independent linear equations can be derived.
This means that each point correspondence x1 ↔ x2 accounts for two degrees of freedom.
Since 4 · 2 = 8 and given that there is no three collinear points on either plane, four points
correspondence are su�cient for estimation of the homography [Hartley and Zisserman, 2004].
Four point correspondence is therefore a minimal solution with eight equations, but more
points can be added for increased estimation accuracy.
Though the minimal solution allows calculation of an exact solution, it is unlikely to be the
case in practise. Perfect image measurements can not be guaranteed as a result of noise in
selection of point correspondence e.g. due to camera distortion, human error in selection
or quantization due to rounding of coordinates to nearest integer value. Furthermore, a
completely �at ground plane can not always be guarantied. The calculation of H therefore
becomes an approximate solution.
The eight equations can be solved by Gaussian elimination, for an inhomogeneous solu-
tion. More than four points results in an over-determined set of equations, that can be
solved by least-squares minimization [Hartley and Zisserman, 2004]. The inhomogeneous
solution is solved by setting one of the entries in the solution vector to the value one.
However, in case the selected entry in fact should be zero, no true solution can be found.
This can lead to unstable results, and the method is therefore not recommended in general
[Hartley and Zisserman, 2004]. To avoid this, a homogeneous solution can be found using the
Direct Linear Transformation (DLT) algorithm.
In [Agarwal et al., 2005] a review and comparison of several homography estimation tech-
niques are presented. A tendency for improved performance is observed when the aver-
age distance between correspondence points increase. Therefore it makes sense to select
widely spread points within the shared region of the two cameras. [Agarwal et al., 2005] also
con�rms that more correspondence primitives allow a better estimation of the homography
[Agarwal et al., 2005]. For more accurate results, algorithms that reduce sensitivity towards
outlines like Random Sample Consensus (RANSAC) and Least Median of Squares can be
used [Yue et al., 2004].
The calculation of the homography is done o� line. Though methods exist for self-calibration
[Khan and Shah, 2003, Calderara et al., 2005], it is beyond the scope of this work. However,
in future work, such methods could be applied to create a more autonomous system.

4.1.1 Choice of Camera Registration Method

It is decided to base homography estimation on four point correspondences with the possibility
of adding more points for increased accuracy. A homogeneous solution is found to the point
equations using the DLT algorithm in [Hartley and Zisserman, 2004], as it is recommended not
to use an inhomogeneous solution. Furthermore, rather than applying estimation methods like
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RANSAC for robustness it is decided to take a more practical approach. By implementation
of a tool to ease the homography estimation process, a trial and error approach can be taken
when estimating the homography matrix. The developed homography estimation tool is
described in Appendix F.3 on page 158.
Since the homography does not model non-linear distortion, it is necessary to consider the
e�ects of radial camera distortion. However, since this work is intended to be used for multiple
setups, no speci�c setup can be assumed. The cameras are therefore assumed to follow the
pinhole model which ignores the non-linear radial distortion. Camera distortion must therefore
be corrected beforehand if it is considered a signi�cant cause of inaccuracy.

4.2 Conceptual Design

Corresponding points are selected to ful�ll the basic requirements; the points must be on the
ground plane, no three collinear points and as widely separated as possible. The developed
homography estimation tool allows estimation based on video inputs from each view. Point
correspondences can therefore be collected from a person moving around in the scene as well
as from static landmarks on the ground plane.
As stated under the secondary goals in Section 2.7 on page 25, the system must hold a
view invariant representation of objects. This view invariant representation is well suited for
behavior analysis, because the size of objects and distances between objects have a meaningful
relationship. Furthermore, the same analysis approach can be applied to di�erent camera
setups. This view invariant representation is best established using world coordinates. To be
able to visualize this view invariant representation of objects, it is therefore very useful to have
a view de�ned from world coordinates, e.g. a virtual top-down view of the scene. Therefore,
to allow for view invariant analysis in later modules, a virtual view, ν, is introduced when
mapping points between views. This is depicted in Figure 4.2. The direct plane-to-plane
mapping between views is preserved, but it is handled transparently by mapping through a
virtual view. This requires a homography matrix from each image plane to the virtual view.
Points in the virtual view can be selected arbitrary. However, if world coordinates for the
ground plane is available, a virtual top-down view of the scene can be generated.

x1 x2

ν
X

View 1 View 2

Figure 4.2: Mapping between two corresponding image points using a virtual view.
Point x1 in view 1 is mapped to this corresponding point, x2, in view 2 through the
virtual view ν.

The following documents the estimation of the homography based on the choices above. This
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is followed by examples of homography estimation results for two scenes based on 4 and 6
point correspondences, respectively.

4.3 Estimating the Homography

The homography estimation is based on the DLT algorithm. The algorithm �nds a homoge-
nous solution to a system of linear equations using Singular Value Decomposition (SVD)
[Hartley and Zisserman, 2004]. For notation, the entries of H are represented as:

H =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 (4.1)

Furthermore, points in the image plane are represented by lower case, x, and the corresponding
points in the virtual view are represented by upper case X. All points are represented as
homogeneous 3-vectors, x = (x, y, 1)T and X = (X, Y, 1)T . Corresponding points are related
by:

X = Hx (4.2)

with �=� meaning equality up to scale [Criminisi et al., 1999]. Equation 4.2 may be expressed
as the vector cross product X ×Hx = 0. From this a linear solution for H can be derived
[Hartley and Zisserman, 2004]. Each pair of corresponding points de�ne two linear indepen-
dent equations. These can be determined by rewriting the cross product. The equations for
a pair of corresponding points are:

h11x + h12y + h13 = h31xX + h32yX + h33X

h21x + h22y + h23 = h31xY + h32yY + h33Y
(4.3)

For n point correspondences, 2n equations can be obtained. To determine all eight degrees of
freedom for H, an equation system with eight unknowns must be solved. This requires n = 4
for a minimal solution or n > 4 for an over-determined solution. To �nd the homogeneous
solution, a system of linear equations is de�ned as Ah = 0 [Hartley and Zisserman, 2004].
With A being a 2n × 9 matrix where each of the n point correspondences contribute with
two rows, derived from Equation 4.3, in matrix A. h is the unknown entries in H rewritten
as a vector, h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)T . For n correspondences, Ah = 0
becomes:




x1 y1 1 0 0 0 -x1X1 -y1X1 -X1

0 0 0 x1 y1 1 -x1Y1 -y1Y1 -Y1
... ... ... ... ... ... ... ... ...
xi yi 1 0 0 0 -xiXi -yiXi -Xi

0 0 0 xi yi 1 -xiYi -yiYi -Yi
... ... ... ... ... ... ... ... ...

xn yn 1 0 0 0 -xnXn -ynXn -Xn

0 0 0 xn yn 1 -xnYn -ynYn -Yn







h11

h12

h13

h21

h22

h23

h31

h32

h33




= 0 (4.4)
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Vector h that minimizes the algebriac residual ||Ah||, is obtained directly from the SVD
of A [Criminisi et al., 1999]. Using SVD, A is factorized into A = UDVT . The solution
to h is then given by the column of V corresponding to the smallest singular value in D
[Hartley and Zisserman, 2004]. Given that the diagonal entries of D is sorted in descending
order, it is also said that the solution to h corresponds to the rightmost column of V. The
SVD also resolves the issue of avoiding a trivial solution with all entries of h being zero.

4.4 Homography Estimation Results

In the following, two examples of homography estimation using the homography estimation
tool are presented. The �rst setup is from the HERMES dataset and the second is from
the Matthews Lane dataset. For an elaborate description of the utilized datasets, please see
Appendix D on page 147. To enable a top-down virtual view of the scenes, world coordinates
are applied in both cases. In HERMES these are obtained from known markers on the road,
and in Matthews Lane these are obtained by a person pacing out the scene.
Point correspondence are selected by clicking in the images with a mouse. The estimation is
most sensitive to selection of points in side or wide view setups where a pixel displacement

(a) View 1 (b) View 2

(c) Virtual view

Figure 4.3: Camera setup from the HERMES dataset. The plane-to-plane homo-
graphies are calculated by point correspondence, as marked by the red circles in the
two camera views. The overlapping area between the two views are clearly visible as a
bright region in the virtual view.
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corresponds to a large distance in world coordinates compared to narrow or top-down view
setups. However, in general the precision in manual selection of the correspondence points is
su�cient to obtain a good homography estimate.
The HERMES setup is shown in Figure 4.3(a) and Figure 4.3(b). The homographies for this
scene is estimated using four corresponding points indicated by the red circles. From the
estimated homographies a virtual view is generated by mapping both views into the virtual
view as depicted in Figure 4.3(c).
The second example is the narrow view setup from Matthews Lane as depicted in Figure 4.4(a)
and Figure 4.4(b). The virtual view of this scene is depicted in Figure 4.4(c). The mapping
in this setup is not completely accurate. This is seen from the straight lines of the pedestrian
crossing which are bend in the virtual view. This is due to violation of the assumption about
completely planar surfaces. The inaccuracy occurs due to the pro�le of the road which is
sloping from the middle of the road towards the curbsides. Because the sloping of the road
is so pronounced in this setup, six correspondence points are used to �nd the most accurate
estimate of the homographies. The sloping of the road is pronounced due to a more side view
setup of the camera in Figure 4.4(b).

(a) View 1 (b) View 2

(c) Virtual view

Figure 4.4: Narrow view camera setup from the Matthews Lane dataset. The plane-
to-plane homographies are calculated by point correspondence, as marked by the red
circles in the two camera views. The overlapping area between the two views are clearly
visible as a bright region in the virtual view.

Given that the assumption about a planar ground plane is valid as in the HERMES dataset,
the estimation results are very accurate. In spite of the described inaccuracies in the Matthews
Lane dataset, experiments showed that the principal axis and footage region method per-
formed well (See Chapter 7 on page 83 for more details). The forthcoming modules are there-
fore expected to function with the results presented above. This means that any methods
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that utilizes the homography mapping must incorporate some robustness towards inaccurate
mapping.

4.5 Summary

The main choices and �nding made in the work on camera registration are:

• Plane-to-plane mapping is done using homography estimation.
• Homography estimation is based on points correspondence rather that higher order

primitives like lines and contours.
• To compute the homography matrix a homogenous solution is found to a set of linear

equations by the DLT method using SVD and a minimum of four point correspondence.
• To enable a view invariant representation of the scene a virtual view is introduced.
• Knowledge about world coordinates is not required unless the virtual view should be

used for view invariant analysis.
• The homography mapping is in general very accurate, but perfectly accurate estimation

can not be guarantied if the surface it not completely planer.





Chapter 5
Foreground Segmentation

The foreground segmentation module is the �rst step of processing the video
sequences from the cameras. The foreground segmentation allows the forth-
coming modules to focus their attention on the areas containing objects.
This chapter documents the analysis and design of motion segmentation.
This is followed by analysis and design of a dedicated shadow suppression
method. The chapter is ended with a test of the module.

5.1 Chapter Overview

The purpose of the foreground segmentation module is to segment the objects from the back-
ground in the video sequences from the cameras. The challenge lie within ensuring that all
the relevant and only the relevant information is segmented as foreground. When having the
background removed, the focus in the later modules can be on classifying and tracking ob-
jects and analyzing their behavior. The foreground segmentation module's place in the overall
system structure is shown in Figure 5.1. The foreground segmentation module receives input
from a camera and delivers a foreground mask as output for the forthcoming modules. Binary
values denoted by black and white represents background and foreground, respectively.

Cam 1

Cam 2

Foreground 
segmentation

Single view 
tracking

Correspondence
View invariant 

analysis

Foreground 
segmentation

Single view 
tracking

Database storage

End user

Figure 5.1: System overview highlighting the foreground segmentation module.

The foreground segmentation module consists of a motion segmentation submodule followed
by a dedicated shadow suppression submodule as depicted in Figure 5.2. Since the shadow
suppression submodule is self-contained, the motion segmentation and shadow suppression
are documented separately. Methods exist that merge motion segmentation and shadow
suppression into one as in [Doshi and Trivedi, 2006], but such methods are not taken into
consideration. First, general considerations regarding the scene in which the system is to
function are presented. This is followed by analysis and design of the motion segmentation in

37
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Section 5.2 through 5.7. Following that, the analysis and design of the shadow suppression is
presented in Section 5.8. As a �nal step, post-processing is applied in Section 5.9. The test
of the foreground segmentation module is presented in Section 5.10.

Cam 1

Cam 2

Motion 
segmentation

Shadow 
suppression

Motion 
segmentation

Shadow 
suppression

Foreground mask

Foreground mask

Figure 5.2: Overview of the foreground segmentation module.

5.1.1 General Considerations

In the problem analysis in Section 2.4 on page 17 a number of computer vision challenges
are listed. The following emphasizes the challenges related to foreground segmentation and
de�nes basic terms used in this chapter:

Object movement In an unconstrained environment it must be assumed that foreground
objects move arbitrarily. Both humans and vehicles may move at di�erent speeds and
stop for various reasons. This is a challenge because foreground objects can not be
assumed to always be moving.

Background camou�age Background camou�age occurs when objects are colored similar
to the background or e.g. due to transparent windows in vehicles. A common type of
background camou�age is humans with grayish pants walking on a gray road or sidewalk.

Re�ections Re�ections occur in both foreground and background, which often are caused
by the surface of windows or vehicles. Another cause of re�ection is due to rain which
makes many surfaces re�ective. Re�ections can cause foreground objects to re�ect the
background and vice versa.

Illumination Changes Both objects and the scene change appearance during the day as
the sun's position changes, as shown in Figure 2.4 on page 19. Moving clouds can also
cause sudden illumination changes in the scene.

Shadow In outdoor scenes the sun causes cast shadows from both background and fore-
ground objects. Cast shadow is considered background since it is not a part of the
foreground objects. Moving cast shadows from foreground objects are background that
are particular di�cult to segment, both due to the signi�cant intensity change caused
by the shadow and due to similarity with the object's motion, shape and size.

Scene dynamics Vegetation like tree branches moving in the wind should be segmented as
background. In general, precipitation and wind can be the cause of both sudden and
periodic changes in the scene.
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Changes in the scene Any number of things can be added, moved or removed from the
scene which changes its appearance like dirt, water, leafs etc. on the road or entrances
opening and closing. Inanimate objects placed in the scene must also be handled.

These challenges are used in the following analysis.

5.2 Analysis of Motion Segmentation Methods

To provide a focus of attention in the forthcoming modules, a method of segmenting the
motion in a video sequence is very useful. The survey in [Hu et al., 2004b] presents three
basic methods for detecting motion. These are described in the following and the choice of
method is presented.

Background subtraction Background subtraction detects motion by comparing the cur-
rent frame with a background model. The method depends on continuously maintain-
ing a good background model. Dynamic updating of the background model is therefore
required if it must function in a dynamic and changing environment. The concept is
illustrated in Figure 5.3.

Temporal di�erencing Temporal di�erencing computes the di�erence between the current
frame and the previous frame(s). A threshold de�nes which pixels that are classi�ed as
foreground. The method is very adaptive to dynamic environments but does not always
detect the entire foreground object due to slow motion or uniform coloring as depicted
in Figure 5.4.

Optical �ow Optical �ow calculates �ow vectors for each pixel to determine motion based
on the similarities between a pixel and its neighbors in a sequence of frames. The
method can be used for handling camera motion. But it is in general computationally
demanding and sensitive to noise [Hu et al., 2004b]. The concept is illustrated in Figure
5.5.

Background modelCurrent frame Difference Classification

Figure 5.3: The concept of background subtraction: the pixel-wise di�erence between
the current frame and the background model is found. Di�erences above a threshold
are classi�ed as foreground.

Discussion and Choice of Motion Segmentation Method

The methods ability to handle the challenges presented in Section 5.1.1 forms basis for the
choice of method. The optical �ow method gives no direct advantages since handling of moving
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Previous frameCurrent frame Difference Classification

Figure 5.4: The concept of temporal di�erencing: the pixel-wise di�erences between
a number of consecutive frames (usually two or three) is found. Di�erences above a
threshold are classi�ed as foreground.

Previous frameCurrent frame Flow field

Figure 5.5: The concept of optical �ow: for each pixel in a frame a motion vector is
calculated. If the motion vector is large enough the pixel is considered foreground.

cameras is not considered an issue. Temporal di�erencing is invariant towards illumination
changes but has the demerits of not detecting the entire object as well as not being able
to detect slow object movement. In contrast, stationary and slowly moving objects can be
handled by the background subtraction method, while it is still possible to be tolerant towards
illumination changes.
For these reasons, it is decided to use background subtraction for motion segmentation. This
is an area of active research, and many interesting background modelling methods have been
proposed.

5.2.1 Background Modelling Methods

Background subtraction is very dependent on the choice of the background modelling method
since it determines the models ability to adapt to changes and model scene dynamics. Pro-
viding that a good background model can be obtained, the actual background subtraction
is straightforward. The di�culties therefore lie within creating and maintaining a robust
background model.
Several methods exist for background modelling. However, for modelling of challenging dy-
namic and changing scenes, two method are dominant, the Mixture of Gaussians (MoG) and
the Codebook method. These two methods are described in the following. A description of
an additional six prominent methods are available in Appendix A.1 on page 127.

Mixture of Gaussians The MoG method models the background of the scene using a num-
ber of Gaussians for each pixel. In [Stau�er and Grimson, 1999], a method is proposed
where a number of Gaussians are determined beforehand. However, methods for dynam-
ically adjusting the number of Gaussians exist e.g. [Christensen and Nikolajsen, 2005].
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In [Wang and Suter, 2005], some practical issues relating to illumination changes and
relocation of objects in the background are presented along with solution proposals.

Codebook The Codebook method is a multimodal method that describes the background
colors of each pixel using a number of cylinders in RGB space, called codewords. The
collection of codewords for a background pixel constitutes the codebook for that pixel.
The Codebook method is described in [Kim et al., 2005] along with methods for dy-
namically and adaptively updating the background model. Extensions to the updating
process are proposed in [Andersen and Corlin, 2005].

Discussion and Choice of Background Modelling Method

A comparison between MoG and Codebook is presented in [Chalidabhongse et al., 2003]. In
[Chalidabhongse et al., 2003], a perturbation test is suggested and performed. By randomly
perturbing the color vectors in the image increasingly, the detection rate of the method tested
can be evaluated. A perturbation means a change in chromaticity or brightness. The pixel
becomes increasingly di�erent from the background the more perturbed it gets. The perfor-
mance measure is the amount of perturbed pixels detected as foreground. The higher detection
rate with small perturbation, the better the method. The results unanimously indicates the
superiority of the Codebook method, as this has the highest sensitivity and detects the per-
turbed pixels at the lowest perturbation magnitude. This higher sensitivity for the Codebook
method enables it to do better segmentation when foreground camou�age is present. Two of
the graphs presented in [Chalidabhongse et al., 2003] are shown in Figure 5.6, indicating that
the Codebook method performs best in both indoor and outdoor environments.

Figure 5.6: Result graphs of the perturbation test indicating the superiority of the
Codebook method, both indoors and outdoors. The interesting curves are the Codebook
(CB) and Mixture of Gaussian (MoG). Figure from [Chalidabhongse et al., 2003].

However, some improvements to the MoG method that was used for comparison in
[Chalidabhongse et al., 2003] have been suggested, e.g. as those mentioned in
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[Wang and Suter, 2005]. These could have changed the outcome of the tests as they ad-
dress some of the issues with MoG pointed out in the literature. Recent work within this
�eld, in [Christensen and Nikolajsen, 2005] and [Andersen and Corlin, 2005], have used MoG
and Codebook, respectively. Both obtained reasonable results with improvements to the
methods. No bias can really be drawn from their conclusions without further, more detailed
investigation. However, the Codebook method has proven to perform well in our earlier work
[Hansen et al., 2007]. Therefore, the Codebook method is chosen for foreground segmentation
in this work.

5.2.2 Analysis Summary

In this analysis two choices are made. First, it is chosen to discard temporal di�erencing
and optical �ow in favor of background subtraction for motion segmentation. To be able
to perform background subtraction robustly, a number of methods for building a background
model are investigated as well as the possibilities for dynamically maintaining the model. The
Codebook method is chosen in favor of MoG, as it has proven to perform well in earlier work
and because it has great potential for handling dynamic scenes.

5.3 Conceptual Design

This section describes the conceptual design of the motion segmentation. The design is based
on the choices made in the analysis. In order to make a model of the background using the
Codebook method, a number of frames are used to train the model. After the training is
completed the background model can be used to detect foreground objects. This phase is
referred to as online classi�cation. The conceptual design of the foreground segmentation is
depicted in Figure 5.7, with the background model illustrated by a cylinder and the training
and online classi�cation illustrated by shaded boxes.

Background 
Model

Training Online 
Classification

Shadow
Suppression

Dynamic 
Update

Input Input

Post-
processing

Binary mask

Figure 5.7: Conceptual design of the foreground segmentation module.

During online classi�cation the model needs to be updated. The purpose of updating is
twofold. Firstly, the illumination of the scene change over time, and the background model
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must adapt accordingly. Secondly, static objects may be added to the scene after training,
and these objects must be added to the background model.
The output of the motion segmentation is a binary mask. After motion segmentation, shadow
suppression is performed. Some isolated pixels may be falsely classi�ed as foreground, and to
avoid this post-processing is performed before outputting the binary mask.
In the following, it is explained how the Codebook method models the background using
codewords. The training of the background model and construction of the codewords are
explained afterwards. This is followed by how online classi�cation is performed. Finally,
dynamic updating of the background model is described.
A number of parameters are used during training and online classi�cation of the codebook.
The values of these parameters are based on experiments. A complete list of the parameters
are given in Appendix E.1 on page 153.

5.4 Background Model

The background model consists of a codebook for each pixel in the frame. A codebook consists
of a number of codewords. The codebooks does not necessarily contain the same number of
codewords. The variation at a pixel determines the number of codewords. If the variation is
small only a single codeword is created while a large variation results in more codewords.
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(a) Illustration of a codeword.
The codeword spans a volume in
the RGB-space.
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(b) A codeword and a pixel xt.
If xt is within the volume (the
red cylinder) it activates the code-
word.

Figure 5.8: A codeword in RGB-space.

A codeword is illustrated in Figure 5.8(a). Each codeword spans a volume in the RGB-space.
The volume is shaped as a cylinder. A sampled pixel within the volume of a codeword is
classi�ed as background. When a pixel is in this volume, it is said to activate the codeword.
Each codeword consists of the following elements:
v : An RGB vector representing the mean color of the codeword.

It is de�ned as v = (vR, vG, vB)T .

Ǐ : The minimum brightness or intensity of all pixels activating the codeword.
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Î : The maximum brightness or intensity of all pixels activating the codeword.
f : The frequency with which the codeword has been activated.

λ : The maximum negative run-length (MNRL). It is the longest time interval a codeword
has not been activated.

p : The �rst time the codeword was activated.
q : The last time the codeword was activated.

Using these elements, a codeword c is de�ned as

c = (v, Ǐ, Î , f, λ, p, q) (5.1)

The elements v, Ǐ and Î are illustrated in Figure 5.8(a). The use of the remaining elements
is elaborated in Section 5.5 describing the training of the background model.
As mentioned earlier, a pixel is classi�ed as background if it is within the volume of a code-
word. In Figure 5.8(b) it is shown how the pixel sampled at time t, called xt, is compared
with a codeword. Figure 5.8(b) is an extension of Figure 5.8(a). The Codebook method
separates the chromaticity and intensity when testing if xt activates a codeword. According
to [Kim et al., 2005] the variation of a background pixel is mainly caused by the change in
illumination. Hence, background pixels are distributed as an elongated shape along the axis
going toward the origin point of the RGB-space. This is the reason for doing a separation
between the chromaticity and the brightness. The following section describes the color distor-
tion metric used to determine the chromaticity di�erence. This is followed by how brightness
changes are handled.

5.4.1 Color Distortion

The color distortion metric shown in Figure 5.8(b) is denoted δ and can be calculated as:

δ =

√
‖xt‖2 −

(
xt · vi

‖vi‖
)2

(5.2)

In order to activate the codeword the color distortion must be smaller than some threshold ε:

colordist(xt,vi) = δ ≤ ε (5.3)

ε is the radius of the cylinder-shaped codeword. Typical values for ε are between 8.0 and
15.0.

5.4.2 Brightness

Like the color distortion, the brightness of the pixel must also be within a given interval. The
statistics Î and Ǐ are used to calculate the interval of allowed brightness. This interval is
de�ned as [Ilow; Ihigh] and is shown in red in Figure 5.8(b). Ilow and Ihigh is calculated using
two parameters, α and β:
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Ilow = α · Î , Ihigh = min
(

β · Î ,
Ǐ

α

)
(5.4)

where α < 1 and β > 1. According to [Kim et al., 2005], typical values for α is between 0.4
and 0.7 and β is between 1.1 and 1.5. The interval is able to limit the shadow level and
highlight level. Hence, a human's shadow is classi�ed as background whereas the human is
classi�ed as foreground. In order for the pixel xt to activate the codeword, the following
condition or function must return true:

brightness
(
I, (Î , Ǐ)

)
=

{
true if Ilow ≤ I ≤ Ihigh,

false otherwise
(5.5)

where I = ‖xt‖ =
√

xR
2 + xG

2 + xB
2.

5.5 Training

In the following the construction of a single codebook is described. As mentioned earlier, each
pixel in the frame has a corresponding codebook consisting of a number of codewords. The
model is trained using a training sequence of Ntrain frames. The pixel sampled at time t in
the training period, xt, is compared to the current codebook, C, to determine which codeword
cm (if any) it matches. m is the matching index of the codeword in the codebook C. The
algorithm for constructing a codebook is shown in Listing 5.1.

Listing 5.1: Algorithm for constructing a codebook
1 L = 0 , C = ∅
2 For t = 1 to Ntrain do
3 xt = (xR, xG, xB)T , I =

√
xR

2 + xG
2 + xB

2

4 Seek matching codeword cm in C based on the two conditions:
5 colordist(xt,vm) ≤ ε1

6 brigthness(I, (Ǐm, Îm)) = true
7 If C = ∅ or there is no match, then create a new codeword with index L:
8 L = L + 1
9 Create a new codeword cL = (xt, I, I, 1, t− 1, t, t) and add to C
10 Otherwise, update the matching codeword cm:
11 vm =

(
fm·vR,m+xR

fm+1 ,
fm·vG,m+xG

fm+1 ,
fm·vB,m+xB

fm+1

)T

12 cm =
(
vm , min(I, Ǐm) , max(I, Îm) , fm + 1 , max(t− qm, λm) , pm , t

)

13 End for

The two conditions in line 5 and 6 in Listing 5.1 are Equation 5.3 and 5.5, respectively.
The algorithm does not try to �nd the best matching codeword to xt. Instead it �nds the
�rst codeword that satis�es the two conditions. Based on experiments, [Kim et al., 2005]
have shown that the order of the codewords in the codebook has no signi�cant e�ect on the
resulting detection sensitivity.
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5.5.1 Temporal Filtering using Max Negative Run-Length (MNRL)

The resulting codebook from the algorithm in Listing 5.1 contains all the codewords that rep-
resent the training sequence. It may contain codewords modelling noise or moving foreground
objects if some are present in the training sequence.
The purpose of the temporal �ltering step is to remove all codewords not representing true
background. This makes it possible to train with moving foreground objects and scene dy-
namics as described in Section 5.1.1. Dynamic background can be quasi-periodic, meaning
that it appears almost periodically in the training sequence. A foreground object moving
around in the scene during training is not quasi-periodic. For quasi-periodic appearance the
MNRL (λ) is short while non-periodic appearance result in a long MNRL. The non-quasi-
periodic codewords caused by moving foreground objects can be therefore be removed using
the MNRL, while preserving dynamic background objects, like tree branches, that reappear
quasi-periodically. The advantage of using the MNRL for temporal �ltering contrast to other
methods such as e.g. median �ltering, is that it is independent of the frequency of codeword
activations f .
To calculate the true MNRL, the training period for each codeword must be wrapped around:

λi = max(Ntrain − qi + pi − 1 , λi) (5.6)

1 Ntrain

λi

pi qi

True MNRLTrue MNRL

Figure 5.9: The true MNRL found using wrap around. A short vertical arrow il-
lustrates each time the codeword has been activated. The MNRL obtained from the
training is marked with a solid red line. The MNRL after wrap around is marked with
a solid blue line.

The wrap around principle is shown in Figure 5.9. Codebooks are removed using a MNRL
threshold, Tλ. A typical value for this threshold is 0.5 ·Ntrain. The resulting codebook, C, is
given by:

C = {cm|cm ∈ C ∧ λm ≤ Tλ} (5.7)

5.6 Online Classi�cation

After the training is completed the pixels in the frame are classi�ed as either foreground or
background. To classify the pixel sampled at time t, xt, the algorithm in Listing 5.2 is used.
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Listing 5.2: Algorithm for background subtraction
1 xt = (xR, xG, xB)T , I =

√
xR

2 + xG
2 + xB

2

2 Seek matching codeword cm in C based on the two conditions:
3 colordist(xt,vm) ≤ ε2

4 brigthness(I, (Ǐm, Îm)) = true
5 If match found, then
6 Update cm

7 Classify xt as background
8 Otherwise
9 Classify xt as foreground

A di�erent threshold for the color distortion metric may be used when doing online classi�-
cation. It is reasonable to only allow small variation in the color distortion during training,
whereas the variation over longer periods of time would be greater due to large changes in
illumination conditions. Hence, the value of ε1 from Listing 5.1 may be smaller than that of
ε2 from Listing 5.2.

5.7 Dynamic Updating

In Listing 5.2 it is only stated that the codeword should be updated, but it is not shown how to
do it. The activated codewords could be updated the same way they were during training (line
11 and 12 in Listing 5.1). However, this updating method is not able to handle gradual change
in illumination. Instead an adaptive �lter is used to update the codewords. Furthermore, the
method described so far is not able to handle added static objects to the background after
�nished training. The background model can handle these added background objects by using
layers. The adaptive updating and the use of layers are described next.

5.7.1 Adaptive Updating

According to [Kim et al., 2005] the variation of pixel values are di�erent at di�erent surfaces
(shiny or muddy) and under di�erent levels of illumination. This makes it reasonable to use
a pixel-wise updating method as opposed to a frame-wise updating method. The following
pixel-wise updating method is based on the update method from [Andersen and Corlin, 2005].
The mean color of the activated codeword can be updated using an adaptive �lter. At time t

the mean color vector is updated to be used at time t + 1. This is achieved using the current
mean color vector, vm, t, and the sampled pixel at time t, xt:

vm,t+1 = (1− γ) · vm,t + γ · xt , 0 ≤ γ ≤ 1 (5.8)

γ is the learning rate and is typically between 0.005 and 0.020.
The two intensity measures in the codeword are changed according to an estimation of the
change in intensity. The change in intensity, ∆I, is estimated using half the intensity change
in the mean color vector:
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∆I =
‖vm,t+1‖ − ‖vm,t‖

2
(5.9)

This estimate has in experiments shown to be better than ∆I = ‖vm, t+1‖ − ‖vm, t‖. The
change in intensity from Equation 5.9 is added to Ǐm and Îm:

Ǐm,t+1 = Ǐm,t + ∆I , Îm,t+1 = Îm,t + ∆I (5.10)

The distance between Ǐ and Î are not changed by adding ∆I,t. The remaining elements of
the codeword are updated as done in the training.
A disadvantage of adaptive updating occurs when a pixel is falsely classi�ed as background.
In this situation the background model is updated to model a foreground object. When the
foreground moves, the background model falsely classi�es the corresponding pixel, which now
represents true background, as foreground. To reduce the e�ect from this, only pixels that
represent stable background is updated. When a pixel has been classi�ed as background for
the last Nstable frames it is said to be stable. Nstable is typically between 5 and 15 frames. A
disadvantage of this approach is that a pixel may never be updated if it is wrongly classi�ed
as foreground every Nstable−1 frames and background otherwise. However, keeping the value
of Nstable low reduces this problem.

5.7.2 Updating using Layers

To allow the background model to adapt to addition and removal of objects, layers are intro-
duced. When a foreground object remains stable for an on-line training period a new layer
is added. Layers usually covers more than one pixel in the image, but each pixel is treated
independently. A new layer is therefore merely addition of a new codeword in the codebook
for a pixel. A new layer is only present in the pixels that the object covers. This meaning,
that some pixels might contain one layer, while others contain another layer. Layers can also
overlap, meaning that a codebook can contain parts of multiple layers at once. Lastly, the
changes in the scene might not be permanent, and to delete a layer is merely a question of
removing the codewords that describe the layer. If the inactive codewords are not deleted,
the background model just keep on expanding and in the end, model something that is not
true background.
An example of the concept of a layered background model updating is shown in Figure 5.10.
A vehicle enters the scene and parks. At �rst, the vehicle is classi�ed as foreground, but after
holding still for a while it is absorbed into the background as a new layer.
To handle addition of new codewords, a type identi�er is added to the codewords. By having
di�erent types of codewords, it is possible to discern whether a codeword describes the initial
background obtained through training, a layer being trained online as background or a new
layer of the background, obtained during online classi�cation. The three applied denotations
are listed and described in the following:
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Time

(a) (b) (c) (d)

Figure 5.10: A series of pictures showing the concept of layered updating of the
background model. The upper sequence is the input from the camera and the lower
shows the output of background subtraction. (a) The background alone. (b) A vehicle
enters the scene. (c) The car stops but is still detected. (d) The car is absorbed into
the background model as a new layer and is thus not classi�ed as foreground.

Permanent A codeword obtained during the initial training phase is denoted a permanent
codeword. It is assumed that the background model obtained in training represents
static background in the scene, and these codewords therefore always represent back-
ground. Permanent codewords are never deleted. It is chosen to never delete a perma-
nent codeword in order to make sure that a codebook contains at least one codeword.

Training Training codewords are made whenever no permanent or non-permanent codeword
is activated for a given pixel. The pixel is still classi�ed as foreground, but the training
codeword is in the codebook and undergoes online training, whenever it is activated.
Online training is similar to the initial training.

Non-permanent When the online training period for a given codeword is over and if the
codeword describes true background, it is changed to a non-permanent codeword and
the pixel is classi�ed as background. It has become a layer in the background model.
Once a codeword has been deemed non-permanent, it is updated adaptively in the same
way as the permanent codewords. A periodic cleanup removes inactive non-permanent
codewords.

The methodology behind layered updating of the background model is shown as pseudocode
in Listing 5.3. To clarify the contents, a few variables need de�ning:

Ntrain, online: The number of frames that a codeword must undergo online training before
it can be considered for a change to a non-permanent codeword.

Tλ, online: The online MNRL threshold. The MNRL of the training codeword must be
below this threshold before it can be changed to a non-permanent codeword.

Nexpiration: The maximum allowed number of frames between activation of a non-
permanent codeword. If more frames occur between activation, the codeword
is removed from the codebook.
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The �rst part of the procedure of background subtraction with dynamic update and layering
is similar to the �rst part of the procedure listed in Listing 5.2. By applying layers to the
already established adaptive update method, the background model is now capable of handling
objects being added to and removed from the scene dynamically.

Listing 5.3: Background subtraction with layered and dynamic background updating.
1 xt = (xR, xG, xB)T , I =

√
xR

2 + xG
2 + xB

2

2 Seek matching codeword cm in C based on the two conditions:
3 colordist(xt,vm) ≤ ε2

4 brigthness(I, (Ǐm, Îm)) = true
5 If match found, then
6 If type is "permanent", then
7 Update cm adaptively
8 Classify xt as background
9 If type is "non−permanent", then

10 If cm has expired ((t− qm) > Nexpiration), then
11 Remove cm from C
12 Classify xt as foreground
13 Otherwise
14 Update cm adaptively
15 Classify xt as background
16 If type is "training", then
17 Update cm as in training
18 Classify xt as foreground
19 If cm has completed online training time ((t− pm) > Ntrain, online), then
20 If cm represents background (λm < Tλ, online), then
21 Change type of cm to "non−permanent"
22 Classify xt as background
23 Otherwise
24 Remove cm from C
25 Classify xt as foreground
26 Otherwise
27 Add new codeword with type "training" to C
28 Classify xt as foreground

5.8 Shadow Suppression

A problem left unsolved by the motion segmentation described in the previous sections is
moving shadows. The background subtraction based on the Codebook method is able to cope
with shadows to some extend, but in order to handle stronger shadows like in Figure 5.11, a
dedicated shadow suppression procedure must be applied.
The following presents an analysis of shadow suppression methods. This is followed by con-
ceptual design and discusses the results obtained from experimental testing of the chosen
method.
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5.8.1 Analysis of Shadow Suppression

Shadow can appear as either cast shadow or self shadow [Javed and Shah, 2002]. A cast
shadow is an object casting a shadow on the background, while self shadow is a part of the
object and should not be removed. Results of cast shadows could be false shape, size and
appearance of objects and merge of otherwise separate foreground objects. Furthermore, cast
shadow can appear as an individual foreground object detached from the object causing it
e.g. as depicted in Figure 5.11. Proper foreground segmentation should therefore exclude
cast shadows. Though self shadow is not a problem by it self, it can make it very hard to
separate the cast shadow from the object. A major challenge in suppressing shadow is also
that moving cast shadow appears in connection with objects and that it often has many of
the same characteristics as the objects, e.g. motion, size and shape as mentioned in Section
5.1.1.

Figure 5.11: Though the Codebook method is able to cope with shadows to some
extend, it is not able to handle strong cast shadows from moving objects like in the
example provided above. Because the allowed illumination variation in the codewords
can not be lowered enough to include such shadows without corrupting the background
model.

By reviewing a number of di�erent shadow suppression approaches two are identi�ed as the
most interesting for solving the above mentioned challenges. Several other methods are pre-
sented in the review, which is available in Appendix A.2 on page 128. The two selected shadow
suppression approaches are presented in the following:

Color segmentation The use of colors spaces that separate chromatic and intensity com-
ponents, like YUV, HSV and normalized RGB, allows for detection of shadow pixels
[Moeslund et al., 2006]. This is achievable by using a threshold scheme for the individ-
ual color space components, e.g. as in [Cucchiara et al., 2001] that apply thresholds in
HSV color space based on knowledge of how shadow a�ects each color component.

Multi-view geometry By having multiple overlapping views of the same scene it is possible
to exploit geometry and parallax, to separate objects from shadow. This is done in
[Keck et al., 2006] which compares the color di�erence of pixels between views of an
outdoor scene, using the homography of the ground plane. The method assumes that
object pixels matched between views have a high color di�erence, while pixels that are
background or shadow in both views have a low color di�erence.

The multi-view geometry approach [Keck et al., 2006] is interesting as it exploits the bene�ts
of having multi-view information. However, since it is relatively new and untested, the infor-
mation available about its performance is very limited. An implementation and test of this
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approach is therefore made to evaluate its performance on the Matthews Lane dataset. The
documentation of the multi-view geometry approach is available in Appendix B.1 on page 135.
However, the experimental test shows that the method requires very precise homography map-
ping which can not be guaranteed due to the inaccuracies described in Section 4.4 on page 33.
Furthermore, the test shows that the method has a signi�cant chance of falsely removing
object pixels as shadow. The multi-view geometry approach is therefore discarded. There-
fore, it is chosen to use a color segmentation approach based on [Cucchiara et al., 2001], as it
seems to be the most proven and tested method based on the shadow suppression survey in
[Prati et al., 2003]. Since the method is based solely on color segmentation, it is not optimal
for separating cast shadow from self shadow. Therefore, it is decided to utilize multi-view
information by only considering the footage region as potential shadow, since the footage
region in many cases only contains the cast shadow and not the object.

5.8.2 Conceptual Design

After online classi�cation shadow suppression is performed to remove shadow pixels falsely
classi�ed as foreground. Figure 5.12 extend the conceptual design in Figure 5.7 to show the
details of the integration of the shadow suppression in the foreground segmentation module.
The color segmentation method utilizes a background image generated from the background
model, and the footage region is obtained using multi-view information from another fore-
ground segmentation process. This is depicted by the dotted lines in the �gure.

Background 
Model

Training Online 
Classification

Shadow
Suppression

Dynamic 
Update

Input Input

Post-
processing

Binary mask

Multi-view
information

Figure 5.12: Conceptual design of the foreground segmentation module.

The HSV color segmentation method based on [Cucchiara et al., 2001] is explained in the fol-
lowing. Following this, the utilization of multi-view information to for improving the method
is explained.

5.8.3 HSV Color Segmentation

The color segmentation method compares the individual H, S and V components of the
current frame I(x, y) pixel-wise, with a background image B(x, y). The background image is
generated from the Codebook model by creating an image with the value of the most recently
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activated codeword for each pixel. By thresholding each component individually it is then
determined if the tested pixel is shadow or not. The three conditions for generating the
shadow mask S(x, y) are [Cucchiara et al., 2001]:

S(x, y) =





1 if αV ≤ IV (x,y)
BV (x,y)

≤ βV

∧(IS(x, y)−BS(x, y)) ≤ τS

∧|IH(x, y)−BH(x, y)| ≤ τH

0 Otherwise

(5.11)

The �rst condition compares the intensity. The brightness thresholds αV and βV determines
which interval is considered potential shadow. By choosing a βV less than one, it is possible
to avoid noise that causes the intensity to drop slightly. αV is a lower limit for how much the
intensity can drop and still be considered potential shadow. The lower limit is necessary since
large drops in intensity should not be considered potential shadow due to dark foreground
objects. The second condition is based on the assumption that the saturation component is
either lowered or remains constant in shadows. The �nal condition is based on the assumption
that hue remains relatively unchanged by shadow, since shadow cause little or no variation in
hue. All three HSV components are normalized to be in the range 0 to 1.
From initial work with color conversion it was learned that the saturation component of
the HSV color space is unstable at low intensities which causes high saturation values in
shadow regions. This is a problem since it con�icts with the assumption that the saturation
either remains constant or is lowered in shadow regions. The noise in saturation at low
intensities is due to the cameras and compression which causes instable chromatic components
[Blauensteiner et al., 2006]. The instability in the saturation component is so pronounced in
dark regions due to normalization of the saturation by the brightness when converting from
RGB to HSV [Blauensteiner et al., 2006]. This normalization causes the HSV space to take
the shape of a cylinder, as depicted in Figure 5.13(a), while a non-normalized representation
of the HSV space is cone shaped as in Figure 5.13(b).

(a) (b)

Figure 5.13: Two representations of the HSV color space. (a) Cylinder shaped HSV
color space. (b) Cone shaped HSV space.

The normalization of the saturation is often an implicit part of the conversion from RGB to
HSV [Blauensteiner et al., 2006], e.g. as in OpenCV's color conversion. A color conversion
algorithm without normalization by the brightness is therefore used. As a result, a more
stable saturation component is achieved.
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5.8.4 Adding Multi-View Information

To reduce the number of pixels falsely removed, it is possible to limit the search for shadow
pixels to foreground pixels that overlap with foreground from the other view as depicted
by the blue footage regions in Figure 5.14(b). To ensure that imprecisions in the planar
homography mapping does not cause a too small or missing overlap the foreground masks
are dilated before warping. The full footage region can not be removed as shadow without
the HSV color segmentation, since occlusion of the shadow would result in object parts being
wrongly segmented as shadow.

(a) Test setup

(b) Footage region

Figure 5.14: Example of a moving object with a cast shadow. (a) Test setup. Left:
�rst view. Right: second view. (b) Green: warped mask from the other view. Blue:
overlap with foreground mask and warped mask.

Shadow outside the shared region of the two views is not shadow suppressed in order to avoid
the risk of removing too much of the objects. Since objects outside the shared region often
are very small, shadow can actually help in detecting small objects.

5.8.5 Results and Discussion of Shadow Suppression

In the following a discussion of the results obtained from experimental testing of the color
segmentation method is presented. Experimental tests are carried out on sequences from the
Matthews Lane dataset, since this is the only dataset with signi�cant shadows. An example
of a sequence is shown in Figure 5.14(a). An example of the output without multi-view
information added is given in Figure 5.15.
To further reduce the number of pixels falsely removed by the shadow suppression, multi-view
information is applied. This improves the result as depicted in Figure 5.16. A disadvantage of
the method is if a shadow is only segmented as foreground in one view, no shadow is removed.
The results of the shadow suppression on short sequences with adjusted thresholds is very
good, as depicted in Figure 5.16. However, for long sequences with illumination variation it is
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Figure 5.15: Result of shadow suppression with non-normalized saturation. The
yellow color is the foreground segmented by the Codebook method, and the red is
the portion of the foreground classi�ed as shadow. The frames match those in Figure
5.14(a). The thresholds for both views are set to: αV = 0.25 βV = 0.97 τS = 0.20
τH = 0.20.

Figure 5.16: Result of shadow suppression by only considering the footage region
potential shadow

very di�cult to set appropriate thresholds that allows segmentation of shadows and preserves
object foreground, e.g. as shown in Figure 5.17 where more object pixels than shadow pixels
are removed. A reason why the thresholds are di�cult to adjust is that roads and sidewalks
have little color information and people are most often dressed in similar colors. Also, in
scenes with strong shadows, people often appear dark (self shadow) regardless of their actual
color. This is especially a problem at morning and evening time where the sun illuminates the
scene from a low angle. All together, the results is that the shadow suppression thresholds
becomes very sensitive to changes in illumination as it changes the color and brightness of
both the scene and objects.

Figure 5.17: Result of shadow suppression in the narrow view con�guration of
Matthews Lane.
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5.8.6 Summary of Shadow Suppression

The following lists positive and negative sides of using the color segmentation method for
shadow suppression.
Pros:

• Represents chromatic and illumination components separately for better color segmen-
tation.

• The threshold scheme accounts for the properties of shadow in each color component.
• The number of falsely removed pixels are reduced using multi-view information.

Cons:

• The shadow suppression thresholds are sensitive to illumination, and performance de-
grade over long sequences.

• Objects with large self shadow or resemblance with the background are likely to be
misclassi�ed.

• If a shadow is only segmented as foreground in one view no shadow is removed.

5.8.7 Partial Conclusion for Shadow Suppression

The performance of the shadow suppression is good for short sequences and for scenes with
little variation. However, due to the length of the Matthews Lane dataset, the performance
in this dataset is low and does not signi�cantly improve the foreground segmentation result.
Shadow suppression is therefore not used in any of the forthcoming tests. Though the perfor-
mance is low for the Matthews Lane dataset, the method could still perform well for shorter
sequences and with less illumination changes and background camou�age.

5.9 Post-processing

The output from the foreground segmentation module is a binary image. Some single pixels
may be falsely classi�ed as foreground due to noise. Because there is no surrounding fore-
ground pixels these falsely classi�ed pixels they can be removed using a nmedian × nmedian

median �lter. A 3× 3 or a 5× 5 median �lter is su�cient to remove the falsely classi�ed fore-
ground pixels. An example of applying a 5×5 median �lter on the output from the Codebook
method is shown in Figure 5.18. The �nal output from the foreground segmentation module
is the median �ltered binary image.

5.10 Foreground Segmentation Test

As mentioned, this test is based on foreground segmentation without shadow suppression.
The system is intended to run autonomously over long time periods. This means that the
foreground segmentation must be able to handle a number of challenges as described under
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(a) Input frame (b) Codebook output (c) Median �ltered

Figure 5.18: The e�ect of using a median �lter. The applied �lter is a 5× 5 median
�lter.

general considerations in Section 5.1.1. During night time the foreground segmentation is
not expected to register objects since the cameras do not have night-vision capabilities and
the street lights are weak. It is however expected to automatically recover to its normal
performance at dawn.
The test is based on a three day long sequence from the Matthews Lane dataset. From this
sequence 16 hours are selected and subsampled for ground truth labelling. The samples and
ground truth can be found on the DVD (} /tests/foreground_segmentation_test/ ). The
following presents the setup used in the test. This is followed by a description of the ap-
plied metrics and ground truth labelling. Then, the results are presented and ended with a
conclusion and summary.

5.10.1 Test Setup

The Matthews Lane dataset contains more than 160 hours of video recorded in an uncon-
strained environment covering a wide variety of conditions. Of the 160 hours, the longest
continuous sequence of 78 hours is selected for the this test. Foreground segmentation is
performed on all 78 hours by continuously updating the background model. Additionally,
for ground truth labelling the last 16 hours of the 78 hour sequence are selected. In this
way, the Codebook foreground segmentation is running for 62 hours before the ground truth
testing, making the result more realistic in the context of doing long term surveillance. The
16 hour sequence runs from 5:00 to 21:00 and covers various lighting conditions from cloudy
weather to sunshine. Also, the recordings are made on a weekday which contains a signi�cant
amount of tra�c and activity, including a signi�cant number of scene changes. The cameras
are con�gured to adjust white balance and gain automatically, meaning that this can be a
cause of arti�cial illumination changes. However, the automated settings are needed to enable
recording over long periods of time, since this helps to compensate for the natural illumination
changes during the day. Examples of variation in the test data are shown in Figure 5.19. For
more detail about the dataset used in this test, see Appendix D.1 on page 147.
Some practical issues in�uence the video quality; the lamp posts on which the cameras are
mounted can sway in the wind causing small camera movements, and vibration from near
by construction work could cause similar e�ects. Furthermore, due to the large amount of
data, the video sequences have been recorded using a lossy DivX6.5 format at highest quality
setting and 780 kbps bitrate. This causes some compression noise in the images.
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(a) Time: 5:32 (b) Time: 7:38 (c) Time: 11:24

(d) Time: 16:26 (e) Time: 17:41 (f) Time: 20:39

Figure 5.19: Test data scene examples. (a) Morning scene (Noise is often appears
more signi�cant in dark scenes like these). (b) Vehicle background camou�age (Parts of
the truck body and the gray car behind it). (c) Heavy tra�c and object movement. (d)
Person background camou�age (Two persons on the left and parts of the two persons
on the right). (e) Illumination changes causing cast shadow from trees and lamp post
(f) Night scene and car headlights.

To prove the system's ability to produce consistent results in an unconstrained environment
over long periods of time, the foreground segmentation is con�gured with parameters that
are not �tted to a speci�c sequence. The parameters are therefore not selected with the goal
of obtaining the best possible false rejection rate and false acceptance rate, and thus gives
a more realistic impression of the system's ability to do foreground segmentation over long
time.

5.10.2 Evaluation Metrics

For evaluation of the performance the following two metrics are used: false rejection rate
(FRR) and false acceptance rate (FAR). A rejected pixel is a pixel not classi�ed as foreground,
and an accepted pixel is a pixel classi�ed as foreground. The metrics are computed as:

FRR =
Falsely rejected pixels

Number of foreground pixels FAR =
Falsely accepted pixels

Number of background pixels (5.12)

Note that for empty frames with no ground truth foreground, FRR is unde�ned.
Humans and vehicles are marked separately during the ground truth labelling, meaning that
it is possible to evaluate their FRR separately. Since noise is neither human or vehicle, it is
not possible to evaluate the FAR separately for the two objects types.
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5.10.3 Ground Truth Labelling

For ground truth labelling the 16 hours are sub-sampled every 5000 frames (roughly 5 min-
utes). This corresponds to 174 frames per view. An example of a sampled frame for both
cameras is shown in Figure 5.20.

(a) View 1 (b) View 2

Figure 5.20: Example of a scene with both cars and humans. Time: 9:20.

For the labelling some assumptions are made:

• All shadows except self shadow are considered background.
• Vehicles holding still for more than 500 frames are background.
• Humans standing nearly still for more than 500 frames are foreground.
• Objects moved by humans are marked as human foreground in the ground truth (in-

cluding car doors).

As a part of the ground truth labelling a �don't care� zone is de�ned around objects, in
order to compensate for inaccuracies in the hand labelling. All ground truth images are mean
�lter with a 3 × 3 kernel. In this way, blurred edges are created around the objects. This
edge boundary of blurred pixels de�nes the �don't care� zone around the foreground objects.
Foreground segmentation by the system within this don't care zone is not considered in the
calculation of the FRR and FAR. Figure 5.21 depicts the ground truth and corresponding
don't care zones for the right view of Figure 5.20.

Figure 5.21: Left: ground truth for both humans and vehicles. Right: �don't care�
zone surrounding the objects.

5.10.4 Comparison

Examples of the comparison for the scene in Figure 5.20 are shown in Figure 5.22. Figure
5.22(a) shows the ground truth for both cars and vehicles. Figure 5.22(b) shows the output



60 Chapter 5. Foreground Segmentation

produced by the Codebook foreground segmentation. Figure 5.22(c) shows the falsely rejected
pixels used to calculate the false rejection rate (FRR) and Figure 5.22(d) shows the falsely
accepted pixels used to calculate the false acceptance rate (FAR).

(a) Ground truth (b) Foreground segmentation

(c) False rejections (d) False acceptances

Figure 5.22: (a) True foreground for both persons and vehicles. (b) Foreground
segmented by the Codebook foreground segmentation. (c) Falsely rejected pixels for
both views. FRR for view 1: 7.6% (Both), N/A (Cars), 7.6% (Persons). FRR for view
2: 20.7% (Both), 17.9% (Cars), 21.9% (Persons). (d) Falsely accepted pixels for both
views. FAR view 1: 0.190%. FAR view 2: 0.308%.

5.10.5 Results

The results of the 16 hours test for view 1 are given in Figure 5.23(a) and Figure 5.23(b).
View 2 are given in Figure 5.23(c) and Figure 5.23(d).
The graphs show that the performance of the foreground segmentation is relatively consistent
during the 16 hours test. As the �tted line indicate, no real tendency for an increasing of
decreasing performance during period can be identi�ed. However, from the graphs it is clear
that the performance of the background subtraction is low. As can be seen from Figure 5.23(a)
and Figure 5.23(c), there is a number of cases where the FRR is 100 percent. However, a
signi�cant reason for this is the metric used. Since the FRR is calculated by dividing with
the number of ground truth foreground pixels, it is very sensitive in cases where there is a
very limited number of foreground pixels. Scenes with few foreground pixels often occur when
objects are far away from the camera.
Therefore, the total result is calculated for all frames of each view to avoid misleading results
due to frames with very few foreground pixels. This is done by summarizing the number
of falsely rejected pixels, falsely accepted pixels, true background pixels and true foreground
pixels using the same formulas in Equation 5.12. The results of calculating the FRR and FAR
for the total sequence are show in Table 5.1.
These results show very similar performance for both views, though with a relatively high FRR
of 29.2 percent. The most frequent cause for this is objects with small size and background
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(a) FRR view 1

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Samples

F
al

se
 A

cc
ep

ta
nc

e 
R

at
e

(b) FAR view 1
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(c) FRR view 2
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(d) FAR view 2

Figure 5.23: The foreground segmentation results over time for each view. Results
are shown for both views and include both humans and vehicles. The black line is �tted
to the data using least sum of squares. Each sample corresponds to 5000 frames or
roughly 5 minutes.

camou�age. An example of both is shown in Figure 5.24. By looking at the RGB values of the
foreground objects it is seen that the color of their clothes is very similar to the background;
only the intensity sets them apart which makes them very hard to segment correctly.

Figure 5.24: Example of objects that are di�cult to segment. The green box shows
a cyclist which is very hard to see due to his size. Two typical examples of background
camou�age of persons with background colored clothes is also shown (yellow and red
box).

By looking at the foreground segmentation results from an object-wise point-of-view rather
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View 1 View 2
Cars FRR 30.3% 29.6%

Persons FRR 25.3% 26.7%
Both FRR 29.2% 29.2%
Cars FAR 0.68% 0.64%

Persons FAR 1.26% 1.70%
Both FAR 0.41% 0.42%

Table 5.1: Total false rejection rate and false acceptance rate for the foreground
segmentation test.

than pixel-wise, it is seen that the majority of the objects very often are segmented correct.
This is shown in Figure 5.22; even though view 2 in Figure 5.22 has a FRR of 20.7 percent
the four largest objects are clearly visible in the segmentation results, and the falsely rejected
pixels are mainly caused by misclassi�cation around the edges. It is therefore very likely that
the forthcoming modules can perform well in spite of the poor FRR.
The following list some general observations made from the entire 78 hours of the recordings
and corresponding segmented foreground mask:

• The performance of the Codebook method is consistent over time, meaning that there
is no visible di�erence between the outputs produced over the three days.

• During night time the foreground segmentation also performs well with little or no noise,
though the initial appearance of the scene changed completely. Also the foreground
segmentation often detects objects correctly, though they are only lit by street lights.
However, cars with headlights are not segmented correctly.

• Though the performance can decrease slightly in twilight there is no problems with
recovering or adapting during sun rise and sun down.

• In narrow places where people walk very frequently at certain times of a day, e.g. at
a pedestrian crossing, it is hard to avoid that foreground objects are being added as a
layer into the background, since humans often wear similar colored clothes and appear
in an almost quasi-periodical manner.

• Some static objects like parked vehicles with re�ective surfaces could sometimes be very
di�cult to absorb fully into the background.

5.10.6 Partial Conclusion

The FRR of the foreground segmentation is high when compared to other published work.
However it should be seen in the light that the test is performed over a signi�cantly longer
time period than what has previously been done and with a very dynamic and changing scene.
Accordingly, the test gives a very realistic impression of how good foreground segmentation
that can be expected in a 24/7 surveillance application given the current setup and scene
complexity. Also, seen from an object segmentation point-of-view, the results are considered
acceptable as basis for the later modules.



5.11 Summary 63

5.11 Summary

The general �ndings in the chapter regarding foreground segmentation are:

• In the analysis, it is decided to use background subtraction with added shadow suppres-
sion for producing a mask containing foreground objects.

• The background model is constructed and maintained by use of the Codebook method.
• A shadow suppression method based on an HSV threshold scheme with added multi-view

information is selected.
• The shadow suppression method does not perform well over longer periods of time

and with signi�cant changes in scene illumination. It is therefore not applied in the
foreground segmentation test.

• Post-processing is applied to lower the amount of false positives and false negatives in
foreground classi�cation.

• The foreground segmentation is capable of producing consistent segmentation results
during a 78 hours long test sequence.

• The foreground segmentation test shows a false rejection rate of 29.2 percent and a false
acceptance rate of 0.42 percent in a 16 hour test sequence.

• The false rejection rate (FRR) of the foreground segmentation is not as good as in other
work, but the scenes are more challenging and the sequences are much longer than what
is typically presented.

• Seen from an object segmentation point-of-view the results of the foreground segmen-
tation is considered acceptable as basis for the later modules.





Chapter 6
Single View Tracking

The single view tracking module tracks the objects, which is used by the
later modules to do object correspondence and assessing the danger level of
the situation using view invariant analysis. This chapter analyzes existing
object classi�cation and tracking methods. This is followed by the design
of the tracker including a description of probabilistic appearance models,
which is used to resolve occlusion situations.

6.1 Analysis

The single view tracking module serves two purposes. The �rst is to classify moving objects
as a speci�c type, e.g. �human� and �vehicle�. Secondly, to track each single moving object
through its movement in the scene. Occlusion of objects are natural in tra�c scenes, and the
module must be able to resolve this issue. Because the principal axis method [Hu et al., 2006]
is used to do object matching in the correspondence module, single view tracking is required.

Cam 1

Cam 2

Foreground 
segmentation

Single view 
tracking

Correspondence
View invariant 

analysis

Foreground 
segmentation

Single view 
tracking

Database storage

End user

Figure 6.1: Overview of the system highlighting the single view tracking module.

The single view tracking module is highlighted in the system overview in Figure 6.1. The
input to the module is the binary mask from the foreground segmentation module and the
current color frame obtained from a single camera. The output is a track list where each
tracked object is represented using a unique ID. This track list is given to the forthcoming
module, which is the correspondence module.
The following analysis for the single view tracking module starts with general considerations
for the module. This is followed by a review of work related to the �eld of object classi�cation.
Lastly, the tracking methods are analyzed at di�erent levels.

65
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6.1.1 General Considerations

In the problem analysis in Section 2.4 on page 17 a number of computer vision challenges are
listed, some of which in�uence the single view tracking. The following emphasizes the main
challenges related to the single view tracking module.

Occlusion The most important feature of a tracking module may be its ability to handle oc-
clusion situations. Occlusion can be divided into three categories; inter-object occlusion
is occlusion between moving objects, self occlusion is when an object occludes a part of
its own object body and static occlusion is when a static background object occludes a
moving object.

Foreground segmentation issues As shown in the foreground segmentation test in Sec-
tion 5.10 on page 56, the segmentation is sometimes faulty. A relatively large area might
wrongly be classi�ed as foreground due to noise, a large portion of an object might be
missing or an object might be divided into multiple disjoint blobs. An example of the
latter is shown in Figure 6.2. These issues must be addressed by the module.

Figure 6.2: Example of foreground segmentation errors, where the human ob-
jects are divided into multiple disjoint blobs.

Track initialization Many tracking algorithms perform well during occlusion situations us-
ing some model. However, often the models require correct initialization which is di�-
cult in an unconstrained environment where objects enter and leave at the same time.
Human objects enter as a group and a vehicle object cover a large portion of the �eld
of view even though the object has not fully entered the scene. Therefore, the module
should utilize measures to reduce the problem of incorrect track initialization.

Data association Associating the tracks with the new measured positions of the objects is
called data association. When using a low frame rate, the displacement of the moving
objects might be quite large. Therefore, the problem of data association could be
reduced using a high frame rate. 15 fps is the lowest frame rate in the available datasets
(See Appendix D on page 147 for a description of the datasets), but this is a su�cient
frame rate to ensure overlap of the objects (both human and vehicle) from frame to
frame.

These general considerations are used throughout the analysis and design of the module.
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6.1.2 Object Classi�cation Methods

To have the best understanding of the object behavior, the correct classi�cation of the moving
object is needed. The classi�cation must be able to discriminate between several classes
depending on how �ne a classi�cation is wanted. A human object could e.g. be walking,
cycling or skateboarding. Some classes could be hard to discriminate, e.g. a person walking
appears quite similar to a person on skateboard. A more coarse classi�cation is thus easier to
achieve. Furthermore, since it is expected that a group might enter the scene, the classi�cation
should be able to classify this object as a group; or at least as a human object rather than a
vehicle. In addition, background clutter should be rejected at this stage.
According to [Hu et al., 2004b] two main approaches for classifying moving objects exist:

Shape-based classi�cation Descriptors of shape information are used. This could be based
on points, boxes, silhouettes and blobs. Speci�c features could be image blob dispersed-
ness, aspect ratio of bounding box and area of the blob.

Motion-based classi�cation Humans are non-rigid articulated objects, and their motion
shows a periodic property. This is utilized in motion-based classi�cation by analysis of
the presence of this periodicity to separate human motion from e.g. vehicle motion.

Discussion and Choice of Object Classi�cation Method

Both approaches are able to solve the classi�cation task. The motion-based classi�cation re-
quires some temporal amount of motion data before a classi�cation is possible. This results in a
delay when determining the type of an entering object. As an example, [Cutler and Davis, 2000]
uses motion-based classi�cation, and their method introduces a delay of one second. Further-
more, it is not clear how a motion-based classi�cation approach performs when classifying a
group of people. This is the main reason for choosing a shape-based classi�cation approach.

6.1.3 Tracking Methods

To give an overview of the tracking methods, the structure used in [Yilmaz et al., 2006] is
applied. [Yilmaz et al., 2006] is a survey focusing only on the object tracking issue. In the
following, the main points of the survey are given. A more detailed description based on the
survey is given in Appendix A.3 on page 130. A tracking method can be divided into three
levels, and these are depicted along with the common choices in Figure 6.3. A bottom-up
approach is followed in describing the issues related to tracking. The �rst issue is to �nd a
suitable representation of the object. Afterwards the image features used to track the object
is presented. At the top level, the general tracking approaches are described. Based on this
analysis, a discussion and choice of tracking method follows.

Object Representation

The object representation is the lowest level in tracking and can be divided into shape and
appearance of objects. A strong relationship exists between the object representation and the
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Shape description
• Points 
• Primitive geometric shapes
• Articulated shape models
• Skeletal models
• Object silhouette and contour

Appearance description
• Probability densities of object 

appearance
• Templates
• Active appearance models
• Multi-view appearance models

• Color
• Edges
• Optical Flow
• Texture

• Point tracking
• Kernel tracking
• Silhouette tracking
• Body model tracking

General tracking 
approach

Features

Object 
representation

Figure 6.3: Overview of tracking methods. The three tracking levels are shown. For
each level the common approaches are listed inside a box.

general tracking approach. The possible shape descriptions are listed in the bottom left box
in Figure 6.3 and common shape representations are illustrated in Figure 6.4.
As with the shape of the objects a number of approaches exist to represent the appearance
of the objects. Some representations combine both the shape and appearance of the objects.
Common appearance representations are listed in the bottom right box in Figure 6.3 and for
more details see Appendix A.3 on page 130.

Feature Selection

Selecting the features to use in the tracking of objects is closely related to the object repre-
sentation; e.g. color features are used in probability densities of object appearance and object

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.4: Object representations. (a) Points: Centroid. (b) Points: Multiple points.
(c) Primitive geometric shapes: Bounding box. (d) Primitive geometric shape: Bound-
ing ellipse. (e) Articulated shape models: Part-based multiple patches. (f) Skeletal
models: Object skeleton. (g) Object silhouette and contour: Complete object con-
tour. (h) Object silhouette and contour: Control points on object contour. (i) Object
silhouette and contour: Object silhouette. Figure from [Yilmaz et al., 2006].



6.1 Analysis 69

(a) (b) (c) (d)

Figure 6.5: General tracking approaches. (a) Point tracking with multiple point asso-
ciation. (b) Kernel tracking using a rectangular representation. (c) Silhouette tracking
illustrated by a contour representation. (d) Body model tracking using rectangular
body parts.

edges are used as features for contour-based representations. It is desired to use features that
make objects easy to distinguish in the feature space. Often features are combined to track
the objects. Some common visual features are listed in the middle box in Figure 6.3.

General Tracking Approach

In the following, four main tracking categories are mentioned. They are highly dependent
on the chosen object representation and feature selection, and thus the applicability of the
tracking method depends on which objects are to be tracked. It is a requirement that the
object representation is valid for both non-rigid human objects and rigid vehicle objects.
The four approaches are exempli�ed in Figure 6.5. The four general approaches are shortly
described in the following. For more details see Appendix A.3 on page 130.

Point tracking The detected objects are represented using a single or multiple points. The
association between points in consecutive frames is often based on the previous position
and motion of the object. Point tracking is simple and fast and well suited for small
objects. However, point tracking has problems with occlusion of the tracked points,
misdetection, entries and exits of objects.

Kernel tracking In this context, kernel refers to the object shape and appearance; e.g. a
rectangular shape and a color histogram describing the appearance within the rectangle.
The most occurring appearance representations are in this context templates, probability
densities and multi-view appearance models. The pros are the use of simple geometric
shapes, and that kernel tracking is applicable for both rigid and non-rigid objects.
However, pose estimation is not possible with this representation.

Silhouette tracking Silhouette tracking methods usually uses appearance densities and
shape models for representing the information contained within the object boundary.
Often edges are applied as the feature. Depending on the chosen object model, either
shape matching or contour evolution is used for tracking the object. Trackers based on
silhouettes provide an accurate shape description of the object. However, these methods
often need a training phase and are highly sensitive to initialization.

Body model tracking In body model tracking the �body� of the object is modelled. The ob-
ject is tracked by projecting the model into the image plane and compared with the image
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data. The models are constructed o�ine and incorporate prior knowledge of the object
body. Body model tracking natively holds the object pose and obtains good results
during occlusion (including self-occlusion). However, this tracking method is computa-
tionally expensive, and rigid and non-rigid objects di�ers signi�cantly [Hu et al., 2004b].

Discussion and Choice of Tracking Method

As mentioned in the analysis above, there is a strong relationship between the three tracking
levels. In the following discussion, the focus is on the general tracking methods based on their
pros and cons as listed above. Based on the choice of general tracking method the object
representation and features follows.
The body model tracking methods are computationally expensive and two di�erent models
are required; one for vehicles and one for humans. The silhouette tracking su�ers from
initialization di�culties [Hu et al., 2004b], and in the given problem area it is expected that
objects enter the scene occluding each other (e.g. moving in a group in the human case).
Even though they o�er good description of the object's pose, the aforementioned issues are
the main reason for not choosing body model tracking or silhouette tracking.
Compared to point tracking, kernel tracking appears more robust, because point tracking has
problems with occlusions, misdetection, entries and exits of objects. Therefore, it is chosen
to use kernel tracking.
According to [Yilmaz et al., 2006] color is the most popular feature in kernel tracking. Many
kernel tracking algorithms uses a primitive geometric shape combined with appearance proba-
bility densities or appearance templates based on color features. Examples are [Senior et al., 2006,
Roth et al., 2005, Xu and Puig, 2005, Cucchiara et al., 2004, Hu et al., 2004a, Senior, 2002,
Pérez et al., 2002, Khan and Shah, 2000, McKenna et al., 2000]. Special interest has been
put on [Senior et al., 2006] because this presents tracking results on the PETS 2001 dataset,
which is an outdoor scene containing vehicles, pedestrians and bicyclists. Given the reli-
able tracking results presented by this method, [Senior et al., 2006] is chosen as the basis for
tracking the objects in a single view.

6.1.4 Analysis Summary

The single view tracking module consists of two tasks, which are object classi�cation and
object tracking. The object classi�cation method is based on shape-based classi�cation. Out
of the many di�erent tracking approaches it is decided to use a kernel tracking approach.
Furthermore, it is chosen to base the tracker on [Senior et al., 2006].

6.2 Conceptual Design

The conceptual design of the single view tracking module is shown in Figure 6.6. The input
to the module is the color input frame and the binary mask from the foreground segmen-
tation module. The output is a list of the tracks, which is used as input to the following
correspondence module.
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Figure 6.6: Conceptual design of the single view tracking module.

The remaining chapter is structured based on the conceptual design. As shown in Figure 6.6,
the �rst step is to �nd detected objects by performing connected component analysis on the
binary mask. The detected objects are classi�ed as either a human object or a vehicle object.
Detected objects are associated to the existing tracks. In case of inter-object occlusion this
must be resolve. Each track contains a probabilistic appearance model [Senior et al., 2006],
which is applied to resolve inter-object occlusions. The last step is to update the tracks. The
chapter is ended by a summary. A number of parameters are used to perform single view
tracking, which are explained in the following. A complete list of the parameters is given in
Appendix E.2 on page 154.

6.3 From Blobs to Detected Objects

The �rst action to be taken in the module is to perform connected component analysis on the
binary foreground mask. The analysis is performed using OpenCV's cvFindContours method,
which produces a list of blobs. The extracted blobs are the outermost blobs, meaning that
if an object is segmented with holes, the holes are closed. As mentioned in Section 6.1.1, it
is quite likely that an object is splitted into several blobs. To avoid this situation, blobs are
merged based on two rules inspired by [McKenna et al., 2000]. Two blobs are merged if their
projection of the bounding box overlaps on the x axis. Furthermore, the vertical distance
between two blobs' bounding boxes must be below a threshold. This principle is illustrated
in Figure 6.7. After performing merging of blobs that satisfy the two rules a list of detected
objects is now available, and all further processing is based on this list. Any detected objects,
which are smaller than a threshold Tnoise, are classi�ed as noise and removed from the list.
The disadvantage of this merging approach is that it does not take the existing tracks into
consideration. A person walking above another person in the image might be wrongly merged
into one detected object instead of having two detected objects. The result is that the merging
procedure creates more occlusion situations. However, this type of occlusion is not di�cult
because there actually is no occlusion and is hence easily solved.
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(a) Before merging (b) After merging

Figure 6.7: Merging procedure. Each blob is marked by gray and its bounding box
by a dashed red rectangle. Only two blobs are merged using the two merging rules.

6.4 Object Classi�cation

In Section 6.1.2 it is chosen to perform shape-based classi�cation. Some examples of work
using shape-based classi�cation are reviewed in the following.
The VSAM system [Collins et al., 2000] uses three shape-based features of the moving ob-
ject and a camera zoom factor to discriminate between single human, vehicle, human group
and background clutter. The three shape-based features are dispersedness, area and aspect
ratio. These features are given as input to a neural network. VSAM is tested to classify
objects correctly at a rate of 96.9 percent. [Lipton et al., 1998] uses dispersedness and area
to decide whether a moving object is human, vehicle or background clutter. To achieve more
precise results, temporal consistency constraints are added. [Lipton et al., 1998] reports a
classi�cation rate of 85 percent where the main problem is occlusion of single human objects.
The W4 system [Haritaoglu et al., 2000] analyzes the vertical projection of the silhouettes to
determine whether the moving object consists of multiple people. The vertical projection is
also used in [Hu et al., 2006] to distinguish people from vehicles.
The features used in the reviewed work are all view variant features. Hence, a di�erent
classi�er must be trained for each individual dataset and also for each view in the dataset.
This is the main reason for using a method that only applies a single metric. The object
classi�cation method used in [Hu et al., 2006] only uses the spread for distinguishing people
from vehicles. The spread is calculated using the vertical projection histogram on the x axis
of the foreground pixels assigned to the detected object. The vertical projection histogram
for detected object i is denoted by hi (x). The spread for detected object i is given by:

si =
∑width−1

x=1 |hi (x + 1)− hi (x)|∑width
x=1 hi (x)

(6.1)

In the equation �width� refers to the width of the detected object. The vertical projection is
steeper for an isolated human than for a vehicle, making the spread value higher for an isolated
human than a vehicle. Furthermore, as the vertical projection of a vehicle is smoother than
that of a group of humans, the spread value of a group of humans is also higher than that of
a vehicle. By applying a single threshold, Tspread, it is possible to distinguish human objects
from vehicle objects. This threshold is view variant, but is typically within the interval 0.08
- 0.10. Examples of spread values are shown in Figure 6.8.
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(a) si = 0.173 (b) si = 0.149 (c) si = 0.132 (d) si = 0.127 (e) si = 0.069 (f) si = 0.064

Figure 6.8: Examples of vertical projections. In (c) and (d) the two persons are
detected as a single object.

All objects are thus divided into two classes; either as a human object or as a vehicle object.
Typically, cyclist and skateboarders are classi�ed as a human object. The human class covers
groups of humans, isolated humans, cyclists and skateboarders. The vehicle class covers both
small cars and large cars. This classi�cation is rather coarse, but has proven su�cient for this
work.
The object classi�cation is performed for each detected object in each single frame. As an
object moves through the scene, the classi�er might assign the wrong label for a single frame.
To avoid this situation, temporal consistency as in [Lipton et al., 1998] is applied. For each
track two histograms each consisting of two bins are de�ned. The two histograms are:

Entire history histogram The �rst bin is the number of times the detected object assigned
to the track has been classi�ed as a human object, which is denoted by N1,human. The
second bin is the number of times the classi�cation was a vehicle object and is denoted
by N1,vehicle. The probability for e.g. human classi�cation is given by N1,human

N1,human+N1,vehicle
.

Recent history histogram This histogram is basically the same as the entire history his-
togram, but only counts the recent Nrecent object classi�cations. A Nrecent value a little
above one second of frames is found to be e�ective. The �rst bin is the number of
human classi�cations in the latest N frames and is denoted by N2,human. The second
bin counts the vehicle case and is denoted by N2,vehicle. The probability for e.g. human
classi�cation is given by N2,human

Nrecent
.

The �nal probability for human classi�cation and vehicle classi�cation are given by the mean
of the probability from each histogram:

Phuman =
N1,human

N1,human+N1,vehicle
+ N2,human

Nrecent

2
Pvehicle =

N1,vehicle

N1,human+N1,vehicle
+ N2,vehicle

Nrecent

2
(6.2)

Experiments in this work shows that only applying the entire history histogram caused needed
change in the object classi�cation to happen late. Only applying the recent history histogram
would cause too many changes of the track's object classi�cation. Combining the two has
therefore proven to be e�ective.
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(a) (b) (c) (d) (e)

Figure 6.9: Examples of splitting a group. Yellow line: peak limit. Blue line: valley
limit. Red dot: peak point. Green dot: valley point. The detected object is splitted at
each valley point.

6.4.1 Splitting a Group of People

A detected object classi�ed as a human object is potentially a group of humans.
[Haritaoglu et al., 2000] presents a method to split a group of people using the vertical pro-
jection. The approach �nds the head locations in the vertical projection. [Hu et al., 2006]
applies essentially the same approach, but splits the group using two thresholds. The latter
approach is applied to split a group of people, because it is simpler. The idea is to �nd distinct
peaks and valleys in the vertical projection. The two thresholds are a peak limit and a valley
limit. Any peaks must be above the peak limit and valleys must be below the valley limit.
This is illustrated in Figure 6.9. If a valley is located between two peaks, the detected object
is splitted into two by a vertical line located at the valley point. The valley limit is given by
the mean value of the entire histogram. The peak limit is given by 80 percent of the maximum
value in the histogram. These values for the two thresholds have performed well for di�erent
datasets.

6.5 Data Association

After merging the blobs into detected objects and performing object classi�cation, a list of
detected objects is available. A list of existing tracks is also available, and the task is now
to assign the detected objects to the tracks. This task is referred to as data association. For
each track a Kalman �lter estimating the bounding box location using a �rst-order motion
model is available. The Kalman �lter is used to predict the location of the bounding box
and overlap with detected objects is found. The number of overlapping pixels is stored in a
correspondence matrix, where the tracks are along the columns and the detected objects in
the current frame are along the rows. Note that the object classi�cation of the track or the
detected object is not applied when performing data association.
The correspondence matrix is analyzed and the following situations can be identi�ed: new
object, object lost, object match, object splitting and object merging. The situations are
illustrated in Figure 6.10. The new object situation results in a new track being created given
that it ful�ls some conditions, which is explained in Section 6.5.1. In case of a lost object,
the track is kept alive. After Tdead frames where the track has not been assigned a detected
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Figure 6.10: The �ve data association situations. A circle illustrates a track and a
square illustrates a detected object. An arrow indicates association between a track and
a detected object.

object, the track is destroyed. All tracks in the object match situation are updated using the
assigned detected object. When a track has been updated for Tstable frames it is considered
a stable track. Tstable is chosen to be around half a second, which is related to the use of
probabilistic appearance models described in Section 6.6.
Object splitting and object merging are the most challenging situations. The two situations
might happen at the same time, but object splitting situations are always resolved before
object merging situations. Object splitting situations are resolved by selecting the detected
object with the highest number of overlapping pixels. The associations with other detected
objects are removed. This results in a track being created for the remaining unassociated
detected objects. However, all detected objects that overlap with the track could be merged
into one detected object, but because of the merging procedure described in Section 6.3 this
is not used. Therefore, it is acceptable to only select one associated detected object during
object splitting. Object merging situations are caused by two objects merging, and this is
inter-object occlusion. This is resolved using probabilistic appearance models described in
Section 6.6. Only stable tracks are considered when resolving occlusion situations.
As mentioned in Section 6.1.1, the data association problem is reduced with a high frame
rate because of small object displacement between frames. From that point of view, it might
appear unnecessary to apply a Kalman �lter, but the Kalman �lter is needed to apply track
smoothness constraints presented in Section 6.5.2. A Kalman �lter is also used to estimate
the location of the centroid and the ground point. The ground point is used as the location
of human objects. The estimation of the centroid is needed in order to apply the probabilistic
appearance models, which is described in Section 6.6. Furthermore, the Kalman �lter also
performs low-pass �ltering reducing the e�ect from noisy measurements. A description of the
Kalman �lter can be found in Appendix C.1 on page 141. To summarize, a Kalman �lter is
used to estimate the following for each track:

Bounding box The bounding box is used to perform data association by overlap with de-
tected objects.

Centroid The centroid is used by probabilistic appearance models, which is applied to solve
inter-object occlusions.

Ground point In the human case, the ground point is used as the view invariant localization
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of the object. This is elaborated in Section 7.3.5 on page 90.

6.5.1 Creating New Tracks

As explained earlier, when a detected object is not associated to any existing track a new
track might be created. It is desired to only create new tracks if they are fully visible. This
is related to the probabilistic appearance models, where it is an advantage to initialize the
model correctly (See Section 6.6 for a description of probabilistic appearance models). To
address this issue, a border within the image is de�ned. This border is referred to as the
sentry border. The bounding box of the unassociated detected object must be within the
sentry border in order to create a new track. The sentry border is given by Tsentry and is
located within 5 to 10 pixels from the image border.
The drawback of the condition above is that tracks for large objects like vehicles are created
late. If a narrow view camera con�guration is applied, a vehicle might always touch the image
border as it drives through the scene. Hence, another condition based on the detected object's
size is introduced. If the detected object is above a certain size, TentrySize, it is created as
a track even though it is not within the sentry border. The downside of this approach is
that the probabilistic appearance model does not represent the total object, but only the part
within the �eld of view. However, the alternative is that no track is created and occlusion
can not be handled correctly.

6.5.2 Track Smoothness Constraints

When an object is about to exit the scene often another object enters the scene. The leaving
object is tracked, but the entering object is not tracked due to the entry conditions explained
above. The result is that the track might be �stolen� by the entering object. The probabilistic
appearance model for the track adapts to the appearance of the entering object and is able to
perform occlusion handling. However, the trajectory is wrong and the track actually contains
two identities.
To avoid tracks being stolen, some constraints on the bounding box of the track are applied
to ensure that the track motion is smooth. These constraints are executed after a detected
object has been associated to the track. If the constraints are not met the track motion is
deemed as not smooth, and the bounding box is not updated using the detected object's
bounding box. Instead, the update is performed using the predicted location of the bounding
box estimated by the Kalman �lter. The result is that the leaving object is tracked until exit
and the entering object is assigned a new track when the two objects split.
The �rst attempt to ensure smooth tracks was to apply constraints based on the individual
motion models presented in [Veenman et al., 2001]. However, these motion models are to be
used in a global data association scheme and are furthermore not developed to resolve issues
related to untracked objects. Instead two other approaches are applied simultaneously:

Bounding box expansion This approach uses the bounding box and the area of the track.
If the associated detected object causes e.g. a doubling of the bounding box area
(TbboxBox) and more than e.g. a 50 percent increase in the track's area (TbboxArea), the
track motion is deemed as not smooth.
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Corner displacement This approach uses the corners of the track's bounding box. If the
associated detected object causes a displacement of a corner more than Tcorner pixels,
the track motion is deemed as not smooth.

The corner displacement approach is only applied when the bounding box of the track is
touching the image border, because the bounding box expansion approach does not perform
well along the image border. The two approaches are only applied in the object match
situation. They are not applied when the track is under occlusion.

6.6 Occlusion Handling using Probabilistic Appearance Models

Probabilistic appearance models are applied to resolve inter-object occlusion, which is illus-
trated in Figure 6.10(e). The following is based on [Senior et al., 2006], which covers the entire
Section 6.6. Each track has its own probabilistic appearance model, which consists of an RGB
color model with an associated probability mask. Two examples of a probabilistic appearance
model are illustrated in Figure 6.11. The color model, which is denoted MRGB (x), shows the
appearance of each pixel of an object. Pc (x) denotes the probability mask and represents the
probability of the object being observed at that pixel. Probabilistic appearance models might
be viewed as weighted template matching, where the template is MRGB (x) and the weights
are given by Pc (x). The coordinates of x are expressed using the coordinate system of the
model, which is normalized to the object centroid. E.g. the point x = (0, 0) is the object
centroid in the model coordinate system. In the following, x expresses the model coordinate
system.

MRGB (x) Pc (x)I (x) MRGB (x) Pc (x)I (x)

Figure 6.11: Two examples of probabilistic appearance models. For each example the
input frame, the color model and probability mask at time t are shown.

The use of a track's probabilistic appearance model is illustrated in Figure 6.12. Depending on
the given data association between the track and the detected objects, one of three possible
scenarios is applied. When a new track is created, a new probabilistic appearance model
is created. When in the object match situation, a track re�nement step is applied before
updating the model. The track re�nement step re�nes the position of the centroid before
updating. When two tracks are occluding each other only one object is detected, and this is
the object merging situation (see Figure 6.10(e)). The probabilistic appearance model for the
tracks are used to assign the pixels of the detected object between the two tracks using the
�ow in the bottom line of Figure 6.12.
In the following, the probabilistic appearance model is described starting at the foundation of
the probabilistic framework. In Section 6.6.2 the track re�nement principle is explained. This
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is followed by a description of how the models are build, meaning the creation and updating of
the models. The principle of disputed pixels and depth ordering is described in Section 6.6.4.
Section 6.6.5 explains how occlusion is handled using the probabilistic appearance models,
which corresponds to the bottom line of Figure 6.12.
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Figure 6.12: Flow related to the use of probabilistic appearance model.

6.6.1 The Probabilistic Foundation

The foundation of the probabilistic appearance model is the ability to estimate the probability
that a given pixel x of a detected object belongs to the modelMj of track j. This is denoted
by P (Mj |I (x)). I is the color input image and is assumed to be normalized to the centroid
of the detected object. The probability is calculated using Bayes' rule:

P (Mj |I (x)) ∝ PRGB,j (I (x) |Mj) · Pc,j (x) (6.3)

The a priori probability is given by the probability mask of modelMj , Pc,j (x). PRGB,j (I (x) |Mj)
is the color appearance likelihood, and this is approximated using a Gaussian color distribu-
tion:

PRGB,j (I (x) |Mj) =
1

(2π)3/2 |Σ|1/2
·exp

(
−1

2
(I (x)−MRGB,j (x))T Σ−1 (I (x)−MRGB,j (x))

)

(6.4)
The color model for track j, MRGB,j , represents the mean color for each pixel. In
[Senior et al., 2006] the covariance matrix Σ is assumed to be a diagonal matrix with identical
variance in each color channel. Given these assumptions, Equation 6.4 reduces to:

PRGB,j (I (x) |Mj) =
(
2πσ2

)−3/2 · exp

(
−‖I (x)−MRGB (x)‖2

2σ2

)
(6.5)

σ is selected empirically. Through experiments it is discovered that the assumption of the
same variance in each color channel is valid. However, it is expected that the color variance
is higher for a human object than for a vehicle object, which is rigid and has a larger surface
with uniform color. In practice, applying di�erent σ values for humans and vehicles did not
improve the segmentation during occlusion, which is described in Section 6.6.5. Therefore, the
same σ value is used for both humans and vehicles. It is further assumed that the covariance
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is zero. Experiments showed that this is not actually the case, but applying this assumption
causes a signi�cant reduction in the computational demand.

6.6.2 Track Re�nement

The probabilistic appearance model can be used to re�ne the tracking. Track re�nement is
equivalent to template matching and is performed before updating the track and the model
in an object match situation (see Figure 6.12). The centroid is predicted using the �rst-order
Kalman �lter. Based on this predicted centroid location, the probability is calculated for each
foreground pixel of the associated detected object and summed to a total probability. The
probability for a single pixel belonging to the model is expressed in Equation 6.3. This is
performed in an Nfit × Nfit neighborhood around the predicted centroid. The total proba-
bility for a particular object with a predicted centroid located at (x, y) = (82, 105) in image
coordinates using a 9×9 neighborhood is illustrated in Figure 6.13. The new centroid location
for the detected object is selected at the point with the highest total probability (marked by
a green dot in Figure 6.13).

78
80

82
84

86100
102

104
106

108
110

0.0001

0.0002

0.0003

yx

T
ot

al
 p

ro
ba

bi
lit

y

Figure 6.13: Total probability plotted along the z axis. The new centroid position is
found at the maximum total probability marked by a green dot.

The new centroid location is used to normalize the image I before updating the model de-
scribed in the following section. Without track re�nement the accuracy of the model degrades;
especially the color model becomes blurry. This means that using track re�nement, more de-
tails are visible in the color model. Although computationally expensive, track re�nement
improves the model accuracy and the segmentation during occlusion. Using a neighborhood
larger than 5× 5 to �t the model makes processing in real-time inconceivable.

6.6.3 Building the Model

When a new track is created, a probabilistic appearance model is also created as shown in the
top line of Figure 6.12. The image region containing the object is normalized to the object
centroid and the object's foreground pixels are copied into the color model. The corresponding
locations in the probability mask are initialized to a probability of 0.4 and the remaining pixels
are set to zero probability. An initial probability value of 0.4 has proven to be acceptable; it
is low enough to quickly fade away on the following update if the assigned foreground pixels
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were due to noise.
When the object is isolated, meaning that the data association is the object match situation as
in Figure 6.10(a), the probabilistic appearance model is updated by blending in the appearance
of the associated detected object. This is the last box in the middle line of Figure 6.12. The
color model is updated by blending in appearance of the current foreground pixels:

MRGB,j (x, t) = α ·MRGB,j (x, t− 1) + (1− α) · I (x) if x ∈ F (6.6)

F is the set of foreground pixels for the detected object. In the equation above it is as-
sumed that I has been normalized to the centroid of the detected object located using track
re�nement as described in Section 6.6.2. The probability mask is also updated:

Pc,j (x, t) = λ · Pc,j (x, t− 1) if x /∈ F (6.7)
Pc,j (x, t) = λ · Pc,j (x, t− 1) + (1− λ) if x ∈ F (6.8)

α and λ should be between 0.90 and 0.99. Otherwise, the model changes to fast or does not
change at all. [Senior et al., 2006] suggests setting α = λ = 0.95, which have proven e�ective.
In this way the probabilistic appearance models are continuously updated. A signi�cant
change to the object's appearance is clearly visible in the color model within half a second.
This is the reason for setting the threshold for a stable track to around half a second. A
signi�cant change could be a person turning around. The probability mask has a �memory�
of the object's shape. For non-rigid objects like humans the probability mask has lower
probability for the limbs because these move over a large area, whereas the torso in comparison
is stable. Examples of probabilistic appearance models are shown in Figure 6.11.

6.6.4 Disputed Pixels and Depth Ordering

Before describing the algorithm for segmenting occluding tracks, disputed pixels and depth
ordering are explained. When two objects are merged into one detected object, the pixels
of the detected object can be divided into three parts: pixels belonging to track 1, pixels
belonging to track 2 and overlapping pixels. The overlapping pixels are called disputed pixels,
and the principle is illustrated in Figure 6.14. A disputed pixel is identi�ed by the fact that
both tracks have a non-zero probability; or stated otherwise Pc,1 (x) > 0∧Pc,2 (x) > 0. In the
�gure, red indicates non-zero probability for track 1 only, green indicates non-zero probability
for track 2 only and yellow indicate non-zero probability for both track 1 and 2.
Each pixel of the detected object can be assigned to the track with the highest a posteriori
probability calculated using Equation 6.3. All the red pixels are assigned to track 1 because
track 2 has zero a priori probability. The green pixels are likewise assigned to track 2. However,
which track is assigned the disputed pixels depends on the depth ordering of the two objects.
The track that is assigned the fewest yellow pixels is given greater depth. This way, depth
estimation of the objects can be estimated using the disputed pixels.
The depth estimation becomes a bit more complicated when more than two tracks are under
occlusion. This is handled using a score. All tracks are compared one-by-one and it is
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Track 1
Pc,1(x)

Disputed pixels

Track 2
Pc,2(x)

Figure 6.14: The principle of disputed pixels during occlusions. The disputed pixels
are indicated by the yellow area, which is the overlap between track 1 and track 2.

determined which one is assigned most disputed pixels. The score is incremented for the
track assigned most disputed pixels and the score is decremented for the �losing� track. This
is done for all track combinations, and the track with the greatest depth has the lowest score.

6.6.5 Occlusion Handling

This section describes how occlusion is handled using probabilistic appearance models. The
�ow of the algorithm is illustrated in the bottom line of Figure 6.12. When an object occludes
another object only a single object is detected. Before the merging, the objects have been
updated and a probabilistic appearance model is available for each object. The objects are
segmented using the procedure in Listing 6.1 and Figure 6.15 shows an example.

Listing 6.1: Procedure for segmenting inter-object occlusions
1 The centroids are predicted for each track using a �rst−order Kalman �lter.
2 Tracks are �tted to the foreground pixels as described in Section 6.6.2 in depth−order if

this is available. The foremost track is �tted �rst, and the pixels where this track's
probability mask has non−zero probability are not used when �tting the tracks with
greater depth.

3 Given this best−�t location of the tracks, all disputed pixels are identi�ed.
4 Each disputed pixel is assigned to the track with the highest probability calculated using

Equation 6.3. This is the initial pixel assignment and is illustrated in Figure 6.15(c).
5 Tracks are ordered so tracks assigned fewer disputed pixels are given greater depth as

explained in Section 6.6.4. This depth ordering is used in step 2.
6 All disputed pixels are reassigned to the foremost track which overlapped the pixels. This is

the reassignment of pixels step and is illustrated in Figure 6.15(d).
7 Connected component analysis is performed to clean up the segmentation. See Figure

6.15(e).
8 All tracks with more than TnumPixels pixels assigned are updated using the assigned pixels

as explained in Section 6.6.3.

The connected component analysis, which is performed in step 7 in Listing 6.1, �nds the
largest blobs of the assigned pixels. Only blobs larger than e.g. 25 percent of the largest
blob's area are included in the �nal segmentation. An example of the �nal segmentation
result is shown in Figure 6.15(f).
In the �rst frame of merging of several objects, no depth estimation is available. In the �tting
of the tracks, all pixels are used for all the tracks. When the amount of disputed pixels are
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Figure 6.15: Example of occlusion handling using probabilistic appearance models.
(c), (d) and (e) show the intermediate steps for resolving the occlusion in (b).

large, > Tdepth, the depth estimation is performed and used when �tting the tracks in step 2
in Listing 6.1. This is the reason for the dashed line connecting the �Depth estimation� block
with the �Find best-�t� block in Figure 6.12. A value of Tdepth = 30 has proven e�cient in
the available datasets.
In case of only human objects occluding each other, the depth estimation is performed di�er-
ently. A high located ground point is far away from the camera, so the human object with
the �highest� ground point location in the y direction is assigned the greatest depth. This
assumption is only valid for human objects. Furthermore, the use of the principal axis method
as described in Section 7.3 on page 85 has the bene�t of making the ground point location
more accurate and reliable.

6.7 Single View Tracking Test

This chapter does not contain a test of the module. The output of the module is given as
input to the correspondence module. In the case of human tracks, the correspondence module
improves the accuracy of the tracks. Therefore, the single view tracking module is indirectly
tested in conjunction with the test of the correspondence module (Section 7.5 on page 95)
and the overall system test (Chapter 8 on page 101).

6.8 Summary

The general �ndings in the single view tracking are:
• Blobs are merged into detected objects using a vertical and a horizontal constraint.
• Detected objects are classi�ed using the spread. Track's object classi�cation is made

more robust using temporal consistency.
• Data association is performed using overlap between bounding boxes.
• Two smoothness constraints are applied to avoid tracks being �stolen� by entering un-

tracked objects.
• Each track is assigned a probabilistic appearance model, which is applied to segment

tracks under occlusion and re�ne the location of the centroid.



Chapter 7
Correspondence of Objects

The correspondence module performs object matching of the objects tracked
in each view. This chapter documents the analysis and design of the corre-
spondence module. Object matching of humans is performed using the prin-
cipal axis method. Vehicles are matched using the footage region method.
Having matched objects and known ground plane coordinates, a view invari-
ant representation can be calculated. The accuracy of locating the objects
in the view invariant domain is tested after describing the design.

7.1 Analysis

The correspondence module performs object matching between views for objects within the
shared region. In the following, objects that match between views are also referred to as
corresponding objects. Furthermore, because only the two camera setup is considered, an
object in view 1 is said to be �paired� with an object in view 2.
Given that the world coordinates of the ground plane are known, the correspondence module
makes a view invariant representation of the objects. As discussed in Section 2.4.5 on page 20,
the view invariant representation is well suited for performing analysis of the objects' actions
and interactions because the perspective e�ect in a view is eliminated. Furthermore, the
same analysis approach can be applied to di�erent camera setups. Hence, the output of the
correspondence module is given as input to the view invariant analysis module as depicted in
Figure 7.1. The �gure shows the correspondence module's position in the system.
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Figure 7.1: Overview of the system highlighting the correspondence module.

The analysis related to this module is carried out in the problem analysis and can therefore
be found in Section 2.6 on page 21. The main �ndings in the analysis are:

83
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• The principal axis method [Hu et al., 2006] is a robust object matching method for
humans, but does not apply for vehicles.

• The footage region method [Park and Trivedi, 2006] is robust for matching vehicles, but
is weaker in the human case.

Hence, the two methods are combined in order to have a more robust object matching method.
From each view's tracking module a track list is available, and for each track the object
classi�cation is known, so either an object is human or vehicle. Given this object classi�cation
it is possible to �nd correspondence for humans between views using the principle axis method
and for vehicles by the footage region method. The object classi�cation of tracks is explained
in detail in Section 6.4 on page 72. The following lists some general considerations.

7.1.1 General Considerations

In the problem analysis in Section 2.4 on page 17 a number of computer vision challenges are
listed, some of which in�uence the correspondence of objects. The following describes some
considerations related to the challenges. The considerations are incorporated into the design
of the correspondence methods.

Occlusion Single view tracking might wrongly track several objects as a single object due
to severe occlusion. This occurs frequently when e.g. humans move in groups. The
correspondence module should take this into considerations and use information from
multiple views to resolve the issue.

Inaccurate homography mapping As shown in Section 4.4 on page 33, perfect homogra-
phy mapping can not be guarantied. Therefore, the methods for corresponding objects
should be robust towards some inaccuracies in the homography mapping.

7.2 Conceptual Design

The conceptual design for the correspondence module is illustrated in Figure 7.2. The input
is a track list from each single view tracking module. Depending on the object classi�cation
of the track, either the principal axis method or the footage region is applied. In the human
case, after using the principal axis method, special attention is put on groups of humans.
After this step all human objects are corresponded and their view invariant representation is
calculated. In the vehicle case, the footage region is applied. Some ambiguity might occur
when doing object matching using the footage region method and these are resolved next.
This is followed by calculating the view invariant representation for the vehicles.
In Section 7.3 the correspondence for humans are explained. This is followed by a description
of the approach for �nding correspondence for vehicles. Afterwards in Section 7.5, the accuracy
in locating both human and vehicle objects are tested. The chapter is ended by a summary.
A number of parameters are explained in the following. A complete list of the parameters is
given in Appendix E.3 on page 155.
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Figure 7.2: Conceptual design of the correspondence module.
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Figure 7.3: The principle axis is calculated by minimizing the perpendicular distance
D(xi, l) using least median of squares.

7.3 Correspondence of Human Objects

The correspondence of human objects between views is based on [Hu et al., 2006] and utilizes
the principal axis. The principal axis is a vertical line in the image domain, which is calculated
for each tracked object. The basic idea is that a human is symmetrical around the principal
axis. The axis is recovered by minimizing the median of squared perpendicular distances
between the foreground pixels of the object and a vertical line. The principle is shown in Figure
7.3(a), where xi denotes a foreground pixel, l is a vertical line and D(xi, l) is the perpendicular
distance between a foreground pixel and a line. The principal axis L is determined by the
least median of squares:

L = arg min
l

median
{

D (xi, l)
2
}

(7.1)

For a given vertical line l the squared perpendicular distance is calculated for all foreground
pixels. These distances are sorted in an ordered list, and the median value of this list is found.
This is done for all locations of l and the vertical line with the smallest median value in the
ordered list is selected as L.
A brute force implementation of this principle is computationally expensive. Therefore, an
algorithm using the vertical projection histogram is used to compute the least median of
squares. The algorithm is found in [Yang and Levine, 1992], and an explanation of the algo-
rithm is given in Appendix C.2 on page 144. An example of the principal axis L is given in
Figure 7.3(b). The use of least median of squares, as opposed to e.g. least sum of squares,
makes the method robust towards outliers in the foreground mask such as shadow pixels.
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7.3.1 Geometrical Relationship

For each object the principal axis is extracted as explained above. The intersection of the
object's bounding box and its principal axis is de�ned as the ground point of the object. The
principle of �nding correspondence is illustrated in Figure 7.4. Let H12 be the ground plane
homography from view 1 to view 2 (the details of recovering this homography are described
in Chapter 4 on page 29). Person S in view 1 is the projection of the 3D person S, and the
�gure shows the relationship with person K in view 2. LS

1 is the principal axis for person S

in view 1 and xS
1 denotes the person's ground point. LS is the principal axis for person S in

3D space. gS
1 is the line acquired by projecting LS onto the ground plane in 3D space from

the direction of the view of camera 1. LS
1 is the projection of gS

1 on the image plane of view
1. For person K in view 2, LK

2 and xK
2 denotes the person's principal axis and ground point,

respectively. Let LS
12 be the line in view 2, which is obtained by transforming LS

1 from view 1
into view 2 using H12. LS

12 is also the projection of gS
1 on view 2. qSK

12 denotes the intersection
of the warped principal axis from view 1 (LS

12) and person K's principal axis (LK
2 ). Given

that person S in view 1 corresponds to person K in view 2, the intersection should ideally
be the same as the location of the ground point. Hence, the distance between qSK

12 and xK
2

should be small and is used to evaluate the correspondence likelihood for the pair of principal
axes LS

1 and LK
2 .
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Figure 7.4: The geometrical relationship. Person S in camera 1 is compared with
person K in camera 2.

The intersection point qKS
21 in view 1 can be obtained in a similar manner. The correspon-

dence likelihood of pairing person S in view 1 with person K in view 2 is expressed by the
correspondence distance [Hu et al., 2006]:

DSK
12 =

(
xS

1 − qKS
21

)
(Σ1)

−1 (
xS

1 − qKS
21

)T
+

(
xK

2 − qSK
12

)
(Σ2)

−1 (
xK

2 − qSK
12

)T (7.2)

A small DSK
12 value indicates a good match. Σ1 and Σ2 are 2 × 2 diagonal matrices. The

two diagonal elements denotes the variance in the x and y direction for a given view. In
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the general case, Σ1 and Σ2 would have non-zero covariance and be dependent on the image
location (x, y). However, in [Hu et al., 2006] and this thesis it is assumed that coordinates
x and y are independent and also the variance can be regarded as independent of the image
coordinates, hence Σ1 and Σ2 are diagonal matrices. Σ1 and Σ2 can be determined by
observing the distance between the intersection point and the corresponding ground point in
a test sequence.

7.3.2 The Correspondence Algorithm

The correspondence distance is used in matching people by an algorithm described next. The
algorithm of the principal axis method is presented in [Hu et al., 2006] and is in the following
described for the two camera case, but the method extends to more cameras. Details on this
can be found in [Hu et al., 2006].
At time t it is assumed, that M people with principal axes L1

1, L2
1, ..., LM

1 are observed
in view 1, and N people with principal axes L1

2, L2
2, ..., LN

2 are observed in view 2. The
correspondence algorithm is global, and it selects the pairs of axes by minimizing the total
sum of the correspondence distance values of the pairs. The �ve steps of the algorithm are:

Step 1: The principal axes detected in the two views are combined pairwise. A list (θ) of all
possible correspondence pairs of principal axes is created. Correspondence distances of
these pairs are computed.

Step 2: For each pair (m,n) in the pair list θ, it is checked whether pair (m,n) satis�es
the constraint Dmn

12 < DT , where DT is a prede�ned threshold to classify true or false
correspondence pairs. If not so, pair (m,n) is deleted from the pair list θ. Thus, the
pair list θ only contains pairs satisfying the above constraint.

Step 3: From the pair list θ, all possible pairing modes are found. A pairing mode is a
unique combination of the possible pairs. The pairing modes with maximum number
(l) of pairs are selected and represented with Θ = {Θ1, Θ2, ...,Θk, ...}, where Θk ={(

Lk1
1 , Lk′1

2

)
,
(
Lk2

1 , Lk′2
2

)
, ...,

(
Lkl

1 , Lk′l
2

)}
. k is the index of a paring mode.

Step 4: The pairing mode from Θ with the minimum sum of correspondence distance values
is selected and its index is denoted by λ:

λ = arg min
k

(
l∑

w=1

(
D

kw,k′w
12

))
(7.3)

All principal axis pairs in pairing mode Θλ are the matched ones.

Step 5: The pairs in pairing mode Θλ are labelled.

After �nding the correspondence of tracks, the intersection point is used as the measurement
of the track's ground point. Furthermore, the bottom vertical line of the bounding box is
changed to go through the intersection point.
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(a) View 1 (b) View 2

Figure 7.5: The problem of groups being tracked as a single object in one view. The
crosses in view 2 indicate intersection points obtained by warping the two principal axes
in view 1.

7.3.3 Human Groups

It happens quite often that two or more human objects are tracked as one object, especially
when people enter the scene as a group. Since multiple views are used it often happens that
people are occluded in one view but separable in the other. Other work like [Senior et al., 2006]
and [Hu et al., 2006] �wait� until the people in the group split and can use this information
to detect the event, that a group entered the scene. However, based on observations, people
that enter as a group are most likely to stay as a group while moving through the scene. The
correspondence algorithm from [Hu et al., 2006] does not take this into considerations. So, in
the situation where a group is tracked as individuals in view 1 and as a single track in view
2, there are tracks in view 1 that are not paired with any tracks in view 2. This situation is
illustrated in Figure 7.5, where the persons in view 1 are splitted using the vertical projection
as explained in Section 6.4.1 on page 74, while the occlusion is too severe in view 2 to split
the objects using the vertical projection.
The basic idea of warping the principal axes is still valid in these situations. As can be seen
in Figure 7.5(b) the intersection points (marked by colored crosses) are still located correctly.
In the example, the location of the green intersection point is located highest. This is because
the occluded person in view 2 is farther away from the camera. If more people are walking
side by side, the intersection point would be located even higher.
To do correspondence for groups of humans a modi�ed version of the correspondence algo-
rithm is developed in this work, which is executed after the correspondence algorithm from
[Hu et al., 2006]. In this version, the unpaired tracks in view 1 are located, and these are
tested if they match an already paired track in view 2. If the matching conforms to two
distance constraints the unpaired track in view 1 is paired with the paired track in view 2.
The algorithm is listed in the following, and Figure 7.6 is used as an illustration. Note that
Figure 7.6 is the same situation as in Figure 7.5, but the person with yellow principal axis
in view 1 is not drawn because he is the one being matched using the algorithm described in
Section 7.3.2.
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Figure 7.6: Resolving the problem of a group being tracked as a single object in view
2. See text for explanation.

Step 1: Find all unpaired principal axes in view 1. A list (θunpaired
1 ) of all unpaired principal

axes in view 1 is created and a list (θpaired
2 ) of all paired principal axes in view 2 is

created.
Step 2: A principal axis (Lm

1 ) in θunpaired
1 is selected and is compared with a principal axis

(Ln
2 ) in θpaired

2 . For each comparison two distances are calculated:

Distance 1: Ln
2 is warped from view 2 into view 1 (Ln

21) and the intersection point
is found (qmn

21 ). The distance from the intersection point to person m's ground
point location is found as D1 = |qmn

21 − xm
1 |. The distance is calculated this way

for comparison with distance 2; the two distances are summed in step 3.
Distance 2: Lm

1 is warped from view 1 into view 2 (Lm
12) and the intersection point

is found (qnm
12 ). Furthermore, the ground point location, xm

1 , is also warped from
view 1 into view 2, ym

2 . The distance from the intersection point to the warped
ground point is found as D2 = |qnm

12 − ym
2 |.

Step 3: If D1 < DT1 and D2 < DT2, then n along with the score D1 + D2 are stored in the
list Λm. DT1 and DT2 are selected empirically.

Step 4: Select person n with the smallest score in Λm and label the pair (m,n).
Step 5: Remove Lm

1 from θunpaired
1 . Go to step 2 and repeat the procedure with a di�erent

m until θunpaired
1 is empty.

The algorithm is executed a second time with the order of view 1 and view 2 switched.
The main di�erence between this algorithm and the correspondence algorithm described in
Section 7.3.2 is that this is essentially a greedy algorithm and not a global algorithm. The
distance D2 is applied, because it is expected that the warped ground point should be close to
the principal axis in view 2. Furthermore, considering that the object in view 2 could be four
or �ve people, then the distance from the intersection point to the ground point is expected to
be large. This is illustrated in Figure 7.5(b) where the person farthest away from the camera
has a higher located intersection point. Hence, the distance from the intersection point and
warped ground point is used, and this distance must be smaller than DT2.
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(a) View 1 (b) View 2

Figure 7.7: Tracking of occluded person. Despite being occluded by the vehicle, the
person's ground point is correctly located. View 1 is zoomed in on the person. A
purple vertical line is a principal axis. A black box indicates the bounding box location
before performing correspondence. A colored box is the bounding box location after
correspondence and Kalman �ltering.

Using the modi�ed correspondence algorithm it is possible to add knowledge about the number
of people in the group, even though a group is tracked as a single object.

7.3.4 Kalman Filtering

As mentioned, the intersection point found using the two algorithms described above is used
as the new measurement of the ground point, and the bottom line of the bounding box is
changed to go through the intersection point. The Kalman �lter for the ground point and
the bounding box is used to smooth these measurements. This improves the accuracy of the
tracking when people are within the shared region of the two views. Even during misdetection
of the lower body and occlusions, the ground point found using the intersection point from the
principal axis method is not e�ected. An example of occlusion is shown in Figure 7.7, where
the ground point and bounding box are correctly located in view 1 where the bottom portion
is occluded by the vehicle. The improved tracking accuracy also improves the accuracy of
the view invariant representations of humans, which is described next. Hence, view invariant
analysis becomes more reliable.

7.3.5 Human View Invariant Representation

Human objects are paired using the algorithms described in Section 7.3.2 and 7.3.3. Given
that the world ground coordinates are known, the view invariant representation of a human
object is calculated as a single point in the virtual view. After using the Kalman �lter the
estimated ground point location is warped from each view into the virtual view. The �nal
point location in the virtual view is the mean of the two warped ground points. The accuracy
of this view invariant location is tested in Section 7.5. The view invariant representation for
a group is shown in Figure 7.8. The displacement vectors between previous measured points
in the virtual view are used for estimating the velocity vector of a human object.
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Figure 7.8: A group of two people are tracked and paired. To the right the view
invariant representation is shown only for objects in the shared region. Even though
the group is tracked as a single object in one view both persons have a view invariant
representation. Previous points are shown for both humans.

7.4 Correspondence of Vehicle Objects

The correspondence of vehicles utilizes the footage region, which is also applied in the work by
[Park and Trivedi, 2006] and [Khan and Shah, 2006]. However, [Park and Trivedi, 2006] and
[Khan and Shah, 2006] does not apply single view tracking; both methods map all foreground
pixels into a common domain and perform tracking in this domain. Hence, the applied vehicle
correspondence method in this work di�ers on this point compared to previous work.
The approach works in two main steps. The �rst is to create an overlap matrix and then solve
any ambiguity expressed in the overlap matrix. The overlap matrix is created by warping
all foreground pixels belonging to a vehicle track from view 1 into view 2 and �nd overlap
with any foreground pixels for a vehicle track in view 2. Obviously, the warping direction
can be reversed and the result would be the same. The principle is illustrated in Figure 7.9,
where the same vehicle is visible in the two views. Figure 7.9(b) shows the foreground pixels
assigned to the vehicle track in each view. These pixels are warped into the other view using
the planar homography and overlapping pixels are found. The overlapping pixels are the
common footage region and are marked with yellow in Figure 7.9(c). In the �gure, there is
overlapping pixels and the vehicle tracks are a possible pair. This is marked in the overlap
matrix, where the vehicle tracks in view 1 are listed along the rows and vehicle tracks in view
2 along the columns. However, overlapping pixels is only an indication of correspondence.
When two vehicles drive by each other, they will at some point occlude each other. In this
case, a vehicle in view 1 has overlapping pixels with multiple vehicles, and a vehicle in view
2 also has overlapping pixels with multiple vehicles. This is called a many-to-many overlap.
The possible scenarios are: one-to-one overlap, many-to-many overlap and many-to-one (or
one-to-many) overlap. The overlap matrix for these situations are exempli�ed in Figure 7.10.
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Figure 7.9: Finding overlap between vehicle tracks in view 1 and view 2. If there is
overlapping pixels (marked by yellow), the tracks are a possible pair.

7.4.1 Solving Ambiguity

Using the overlap matrix the possible scenarios are identi�ed. The many-to-one and many-to-
many overlaps are considered as ambiguity in the overlap matrix. The algorithm developed
in this work for solving the di�erent scenarios is graphically depicted in Figure 7.11 and
described in the following. When solving the ambiguity, the vehicle track with the most
possible overlaps is solved �rst. In the end, only one-to-one overlaps are left.

One-to-one overlap: This is a straight forward situation because there is no ambiguity
and is illustrated in Figure 7.10(a). Figure 7.9 is an example of an one-to-one overlap.
The vehicle pairs are labelled, and the view invariant representation is calculated as
explained in Section 7.4.3.

Many-to-many overlap: When two vehicles drive by each other they are at some point
likely to occlude each other in one view. Because of the occlusion in one view the
warped foreground mask of one the vehicles will wrongly overlap with both vehicles in
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Figure 7.10: Possible scenarios illustrated using the overlap matrix. A check mark
in the overlap matrix indicates that the warped foreground masks of the vehicles are
overlapping.
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Figure 7.11: Algorithm applied for �nding vehicle correspondence and solving ambi-
guity in the overlap matrix.

the other view. This yields an overlap matrix as illustrated Figure 7.10(b).

One of two methods is applied to solve this ambiguity. The �rst method is used to ensure
that a historic �relationship� is preserved between vehicle tracks. Before the occlusion,
the overlap matrix does not express any ambiguity and the vehicles are paired correctly.
Using the historic correspondence the ambiguity is solved by maintaining the same
correspondence. The historic relationship is only considered if the last Thistory frames
have had the same pairing of vehicle tracks.

It is not guaranteed that the historic relationship is available to resolve the ambiguity,
e.g. at track initialization. In these situations a di�erent approach based on a �plausible
ground point� is applied. Taking the vehicle's centroid and a vertical line through the
centroid, the plausible ground point is located at the lowest foreground pixels on this
vertical line. The plausible ground is illustrated in Figure 7.12(a) for two vehicles, where
there is occlusion in view 1. This plausible ground point is located on the ground, but
also beneath the vehicle itself. When warping this plausible ground point into the other
view using the planar homography, the warped point should therefore also be located
beneath the car in this view. The warped point is used to solve the ambiguity and is
illustrated in Figure 7.12(b). The plausible ground point is only applied if the history
is not reliable.

Many-to-one overlap: The many-to-one overlap situation is exempli�ed in Figure 7.10(c)
and could be caused by two vehicles being tracked as one in a view. However, the view
with many vehicle tracks could wrongly track noise classi�ed as a vehicle. Furthermore,
a cyclist can be misclassi�ed as a vehicle due to the object classi�cation metric used.
In experiments it is observed, that even though vehicles are merged into one track they
often split a little while later. Of course, this depends on the speci�c scene. Based on
this experience, it is chosen to resolve this ambiguity as in the many-to-many overlap;
�rst trying resolving using the history and, if not available, apply the plausible ground
point.
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(a) View 1 (b) View 2

Centroid

Plausible ground point

Warped ground point

(c) Legend

Figure 7.12: The plausible ground point can be used to solve ambiguities in the
overlap matrix. The many-to-many overlap occurs in this situation because the vehicle
with red centroid in view 1 occludes the lower part of the vehicle with the green centroid.

7.4.2 Handling Vehicle Occlusions

After resolving the ambiguities and pairing the vehicle tracks, it might happen that a pair
of vehicle tracks does not overlap even though it is historically expected. The missing pair
of vehicle tracks could be caused by the entire bottom portion of the vehicle being occluded
in one view. An example is given in Figure 7.13(b), where the white van is occluding the
bottom portion of the turquoise car in view 1. Before occlusion, the turquoise car has been
paired correctly between views and a pairing is therefore expected. The foreground pixels
assigned to the turquoise car in view 1 are shown in Figure 7.14(a) during occlusion. Since no
foreground pixels are available on the bottom portion of the vehicle there is no overlap with
the turquoise car in view 2.
The issue is resolved by utilized the probability mask from the probabilistic appearance model
for the turquoise car. Probabilistic appearance models are explained in Section 6.6 on page 77.
The probability mask represents the probability that a pixel belongs to the object. Stated
otherwise, it contains a �memory� of the shape of the vehicle. This memory is utilized in
reconstructing the shape of the vehicle. The probability mask is thresholded and projected
into the image as shown in Figure 7.14(b). With the shape reconstructed it is possible to
once again �nd overlap with the turquoise car in view 2. Given that there is overlap, the
vehicle tracks are paired. Thus, vehicle tracks are correctly corresponded even during severe
occlusion. Reconstruction of the vehicle shape is only applied, when there is a historically

View 1 View 2

(a) Before occlusion

View 1 View 2

(b) Severe occlusion of turquoise car

Figure 7.13: Example of severe occlusion. The occlusion causes a missing historically
expected pairing of the turquoise car in view 1 and view 2.
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(a) Foreground pixels (b) Reconstructed shape

Figure 7.14: Solving severe occlusion by reconstructing the shape of the occluded
vehicle.

missing pair and one of the vehicle tracks of this pair is under occlusion.

7.4.3 Vehicle View Invariant Representation

When ground coordinates are known, the view invariant representation for humans are found
as a point in the virtual view. It is also possible to represent a vehicle as a single point in
the virtual view, but since vehicles di�er signi�cantly in size this is not advantageous. Size in
this context refers to the area on the ground below the vehicle. Because of this, it is chosen
to represent the vehicle by its footage region in the virtual view. A large vehicle like a truck
then has a larger area in the virtual view than a small vehicle like an electric cart. Because
the foreground detection of the vehicle might be missing a few pixels, �holes� in the footage
region of the vehicle might occur. This can be solved by �tting an ellipse to the points that
make up the footage region in the virtual view. Another possibility is to �nd the convex hull
for the points and �ll in all the points within the convex hull. The latter approach is chosen
since it has proven to be less sensitive towards outliers compared to �tting an ellipse.
Having the footage region in the virtual view (enclosed by convex hull), the centroid is lo-
cated. This centroid simpli�es calculation of the vehicle's velocity vector. The most recent
displacement vectors are applied to calculate the velocity vector. In conclusion, the view
invariant representation consists of the footage region in the virtual view and this region's
centroid. The view invariant representation for a truck is illustrated in Figure 7.15.
The size of the footage region is sensitive to misdetection of the vehicle in one view. Especially
if the pixels at the bottom of the vehicle are misdetected, the footage region is reduced in
size. The footage region increases in size if the vehicle's cast shadow is detected in both views.
Hence, the location of the centroid might not be perfectly accurate, but experiments showed
that the centroid location is reliable for calculating the vehicle's velocity.

7.5 Correspondence Accuracy Test

The accuracy of locating humans and vehicles is documented �rst in the following. Afterwards,
the e�ect of doing correspondence of objects is investigated. This is followed by a test of the
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Figure 7.15: The greenish truck is tracked in both views and paired. To the right the
view invariant representation is shown only for objects in the shared region. The big
blob is the footage region enclosed by convex hull, and the blue points are the current
and previous centroid locations of the footage region.

estimated size of a vehicle and a test of the estimated speed.
In order to measure the accuracy of locating humans and vehicles, ground truth is needed.
For this test, choreographed sequences from the Matthews Lane dataset is used. The dataset
is described in detail in Appendix D.1 on page 147. Matthews Lane has several line markings,
which is used as ground truth lines. There is a narrow view and a wide view camera con�gu-
ration in the Matthews Lane dataset. The narrow view covers a ground plane area of 10× 20
meters, and the wide view covers 13 × 32 meters. As mentioned in Section 4.4 on page 33,
the ground plane coordinates are found by having a person pacing out the scene. Because
of this, the ground truth and all measurements are not 100 percent accurate. However, the
result can be used to give an indication of the accuracy level.
The accuracy test for humans is conducted by having a person walking along the line markings.
This is conducted in both the narrow view and wide view camera con�guration. The same
is conducted for a vehicle. The vehicle drives along the lane markings, where possible. The
lane marking should be located directly under the middle of the vehicle.
The system performs foreground segmentation, single view tracking and correspondence of
the objects on the four sequences (two for the human case and two for the vehicle case).
The results can be found on the DVD (} /tests/correspondence_accuracy_test/ ). The view
invariant representation for a human is a single point, and this is used as measurement for
comparison with the ground truth. Vehicles are represented with its footage region and this
region's centroid. The centroid is used as measurement to be compared with the ground
truth. The measurements are illustrated in Figure 7.16 overlaid on the virtual view of the
scene. Color coding is applied to measurements belonging to the speci�c lane marking. Lane
markings make up the ground truth and a thin white line is drawn on top of the lane markings.
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(a) Measurements human, wide (b) Measurements human, narrow

(c) Measurements vehicle, wide (d) Measurements vehicle, narrow

Figure 7.16: Measurements overlaid on the road. The measurements are color coded
to make it easier to distinguish measurements when these overlap. The ground truth is
illustrated as a thin white line.

Each measurement is compared with the ground truth. The ground truth is either a vertical
line or horizontal line in the virtual view (See Figure 7.16). The perpendicular distance
from the measurement to the ground truth line is used as the estimation error. The mean
absolute estimation error for all measurements is listed in Table 7.1. To perform view invariant
analysis reliably, the measurements must be close to the ground truth, but they must also be
stable. The stability of the measurements can be estimated by the standard deviation of the
measurements, which is also listed in Table 7.1. If the standard deviation is high, estimation
of the velocity might not be reliable.
Some of the inaccuracy of the result in Table 7.1 could be contributed to the inaccuracy of
the ground truth and ground plane coordinates as already mentioned. Furthermore, driving
in the vehicle and having the lane marking directly below the middle of the vehicle is not a
simple task. This is the most probable reason for the high mean absolute estimation error for
vehicles in the wide view camera con�guration.
When looking at the black measurements in Figure 7.16(b) it is evident that the assumption
of a planar ground plane is not valid for the given scene. This contributes to the inaccuracy
of the result. However, considering the cameras are elevated to 6.5 meters looking down on
the objects, the accuracy result is considered satisfactory for the later view invariant analysis.

7.5.1 Disabling Correspondence

The accuracy test can be used to illustrate the advantage of using multiple views compared
to a single view. For vehicles it is not possible to calculate the view invariant footage region
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Camera conf. Mean abs. estimation error Measurement std. dev.

Human Narrow 15.25 cm 13.47 cm
Wide 9.13 cm 9.51 cm

Vehicle Narrow 8.80 cm 9.09 cm
Wide 21.20 cm 10.60 cm

Table 7.1: Accuracy results for humans and vehicles.

Correspondence Mean abs. estimation error Measurement std. dev.

Narrow Enabled 15.25 cm 13.47 cm
Disabled 19.72 cm 21.97 cm

Wide Enabled 9.13 cm 9.51 cm
Disabled 38.33 cm 30.75 cm

Table 7.2: Accuracy results when correspondence is enabled and disabled for humans.

when only single view information is available. However, the view invariant representation
of humans can be obtained from a single view by warping of the ground point from the
image domain into the virtual view. Therefore, the test is conducted once more using the
two sequences for humans, but this time with the correspondence module disabled. The point
in the virtual view is calculated by warping the ground point from each image domain into
the virtual view. This results in twice as many measurements as before. The result with
correspondence module enabled and disabled is listed in Table 7.2.
The mean absolute estimation error increases by disabling the correspondence module. Fur-
thermore, the standard deviation of the measurements increases causing problems for the
reliability of the following view invariant analysis. A slight improvement of the result with
correspondence enabled is due to the fact that the virtual point is calculated as a mean of two
points. However, the most signi�cant reason for increased performance when doing correspon-
dence is the improvement of the ground point location for tracks. This is exempli�ed in Figure
7.17, where the rather poor foreground segmentation causes the noisy location of the ground
point shown in Figure 7.17(b). It should be noted that the foreground segmentation in the
test sequences are good and no occlusions occur. If this is not the case, the estimation error is
expected to increase further when disabling correspondence. Using the principal axis method
the localization of humans is robust towards misdetection of the lower body (exempli�ed in
Figure 7.17(a)) and occlusions.

7.5.2 Size Test

The vehicle used in the test is a small electric cart and measures 1.11×2.82 meters. The ground
plane size of the vehicle is 3.13 m2. The footage region should therefore approximately cover
the same area. In the sequence with the narrow view camera con�guration 409 measurements
are available for calculating the vehicle's size. Based on the measurements the size is estimated
to 4.06 m2. 1060 measurements are available for the wide view camera con�guration, and the
size is estimated to 4.02 m2. In both cases the standard deviation is around 0.35 m2.
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(a) Correspondence enabled (b) Correspondence disabled

Figure 7.17: The e�ect of doing correspondence for humans. This is also one of the
positive e�ects of using multiple views instead of a single view.

The size estimate is almost the same for the two views, but larger than the true ground plane
size of the vehicle. This is probably due to two factors. The �rst is the problem of inaccuracies
in the ground plane coordinates, which has been discussed before. Whether this increases or
decreases the size of the vehicle depends on the type of inaccuracy. The second factor is that
o�-plane points might be mapped to the ground plane and become part of the footage region.
This is very likely given the camera setup used since all sides of the vehicle are not visible.
Adding a third camera would reduce the in�uence of o�-plane points being part of the footage
region.

7.5.3 Speed Test

Given that the location of humans and vehicles can be found as a point in the virtual view, it
is possible to estimate a ground plane velocity vector. The velocity vector is calculated using
the displacement vectors. The magnitude of this velocity vector is the object's speed. No
ground truth data is available for objects' speed. However, to illustrate that it is possible to
calculate the velocity vector (and thus the speed) a vehicle, a cyclist and a walking human are
selected from the Matthews Lane dataset. Their velocity vectors are automatically estimated
by the system and the speeds are calculated. A two second period (30 frames) of the estimated
speed is illustrated in Figure 7.18(a). The standard deviation for this period is around 1.0
km/h for each object. As expected the vehicle moves at a higher speed than the cyclist, which
is faster than the walking human.
The examples in Figure 7.18(a) show objects moving at a constant speed. It happens often
that an object accelerates or decelerates. An example is shown in Figure 7.18(b), where a
vehicle is driving forward, then performs a U-turn, drives forward in the opposite direction
and �nally parks. The graph shows how the speed of the vehicle changes when going through
the four phases. The color coding is applied to illustrate the di�erent phases of the vehicle's
movement. As expected, the speed changes throughout the U-turn manoeuvre.
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(b) Vehicle making a U-turn and parking

Figure 7.18: Examples of the estimated speed for moving objects.

7.6 Summary

The general �ndings in the correspondence module are:

• Humans are paired using the principal axis and correspondence algorithm presented in
[Hu et al., 2006].

• When a group of people is tracked as a single object in one view and as individuals in
another view, a new modi�ed version of the correspondence algorithm is applied.

• Vehicles are corresponded by their footage region.
• An overlap matrix is introduced to identify ambiguities when doing vehicle correspon-

dence. Historic constraints and plausible ground points are applied as methods to resolve
ambiguities.

• Severe occlusions of vehicles are resolved by reconstructing the vehicles shape using the
probabilistic appearance model.

• Humans are represented as a point in the view invariant virtual view. Vehicles are
represented by their footage region and the centroid of this region.

• The accuracy of locating human and vehicle objects are tested using a narrow and
wide view camera con�guration. The mean absolute estimation error is 13.60 cm. An
average standard deviation of 10.67 cm on the view invariant localization of the objects
is reported.



Chapter 8
Results and Discussion

All the modules except the view invariant analysis module are tested as a
complete system. The test is documented in this chapter. The test method
is described �rst and the test sequences used in the test are introduced. This
is followed by the execution and results of the test. Afterwards, the results
are discussed keeping the issues related to humans and vehicles separate.

8.1 Overall System Test

An overall system test is performed and documented in this chapter. However, the view
invariant analysis module is not part of the overall system test, because this module is ap-
plication dependent. The view invariant analysis module is introduced later in Chapter 9 on
page 117, where it is used to demonstrate the applicability of the system and evaluate the
system. Figure 8.1 shows the overview of the system, where the modules tested in the overall
system test are highlighted.

Cam 1

Cam 2

Foreground 
segmentation

Single view 
tracking

Correspondence
View invariant 

analysis

Foreground 
segmentation

Single view 
tracking

Database storage

End user

Figure 8.1: Overview of the system highlighting the modules tested in the overall
system test.

The output of the correspondence module is the view invariant representation of the humans
and vehicles. This output is used to evaluate the performance of the system. For instance,
if a human is not tracked in a view, the human object is not detected in the view invariant
virtual view. The point is that any error observed in the virtual view is due to an error of the
underlying modules.
The test is described �rst. This is followed by the execution and the results of the test.
Finally, the results are discussed.

101
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(a) View 1 (b) View 2

Figure 8.2: Tracking result for the PETS 2001 dataset. Vehicles and humans are
correctly classi�ed and tracked.

8.2 Test Description

Three datasets are available for testing the system and they are described in Appendix D on
page 147. The PETS 2001 and HERMES datasets are short in comparison with the Matthews
Lane dataset, and this is the main reason for using the Matthews Lane dataset for the overall
system test. However, the system is also tested on the PETS 2001 and HERMES datasets, and
qualitative results can be seen on the DVD (} /tests/pets/ , /tests/hermes/ ). An example
of the tracking result for the PETS 2001 dataset is shown in Figure 8.2. Images of the results
in the HERMES dataset are available in Section 9.2 on page 118, since the dataset is used to
demonstrate the system's potential for detecting a near collision between a group of humans
and a vehicle.
For the overall system test the Matthews Lane dataset is applied, which is described in detail
in Appendix D.1 on page 147. This dataset uses two camera con�gurations and contains
recordings lasting several days. Using this dataset it is possible to test the system in a
dynamic tra�c environment at di�erent times of the day, under di�erent illuminations and
with di�erent camera con�gurations. The system is tested using six test sequences, and an
overview of the test sequences are given in Table 8.1. The table shows, that three of the
six test sequences are recorded with the narrow view camera con�guration, and the other
three are recorded with the wide view camera con�guration. The date and time period for
the test sequence are listed next. The columns �# humans� and �# vehicles� refer to the
actual number of humans and vehicles within the shared region of the two cameras. People
on skateboards and on bikes are considered humans, whereas motorcyclists are considered
vehicles. Only objects within the shared region can be matched and should be represented in
the output of the system. Therefore, only objects within the shared region are considered.
The column �BG hours� in Table 8.1 indicates the time period the foreground segmentation
module has been active before the single view tracking modules and correspondence module
are activated to start the test. For the �rst test sequence in the table, the foreground has
been segmented continuously for six hours when the test sequence starts. The point of testing
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No. Camera Date Time of day # humans # vehicles BG hours
1 Narrow 03-05-2007 14:00-15:00 236 51 6
2 Narrow 04-05-2007 07:00-08:15 184 30 1
3 Narrow 04-05-2007 11:00-12:00 364 57 5
4 Wide 16-04-2007 14:30-15:00 92 29 1
5 Wide 14-05-2007 18:00-19:40 177 53 51
6 Wide 15-05-2007 10:00-11:00 298 47 67

Table 8.1: The six test sequences applied in the overall system test. See text for
explanation.

(a) Test sequence no. 1 (b) Test sequence no. 2 (c) Test sequence no. 3

(d) Test sequence no. 4 (e) Test sequence no. 5 (f) Test sequence no. 6

Figure 8.3: Snapshots from the six test sequences. Only a single view is shown for
each test sequence.

the system in this manner is that the foreground mask might not be the most optimal quality,
but the quality is realistic if the system is to be deployed and perform 24 hours a day, seven
days a week. Furthermore, note that the applied test sequences last from 30 minutes to 100
minutes because of varying tra�c throughout the day.
In total, tracking output from 385 minutes of test data is used. This covers tracking of 1351
humans and 267 vehicles. Snapshots from each test sequence are shown in Figure 8.3.
To evaluate the system performance a de�nition of when an object is correctly tracked is
needed. The de�nition of a correct tracked object is: From the time the object enters the
shared region and leaves the shared region, the track representing the object in each view must
remain the same and the tracks must be paired correctly between views. However, for instance
in only a single frame it can happen that the tracks are not paired correctly or the object is
not detected in one view. As long as these errors are below 0.5 second of continuous duration,
the tracking of the object is considered as correct. The point is that an error occurring for a
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single frame can easily be corrected a little while later using the history and is therefore not
a problem.
When the tracking of an object is wrong for more than 0.5 second, the system is said to make
an error. Five types of overall system errors are identi�ed and explained in the following
section. Because overall system errors are caused by errors made in the underlying modules,
the types of module errors are listed afterwards. This is followed by an overview of the errors
given in Figure 8.4.

8.2.1 Types of Overall System Errors

The �ve overall system errors are:

No object in virtual view (totally) An object is within the shared view and visible in
both views, but is not detected in the virtual view at any time.

No object in virtual view (partially) An object is within the shared view and visible in
both views, but only a part of the object's trajectory is detected in the virtual view.
The missing parts of the object's trajectory must last longer than 0.5 second.

Wrong correspondence in virtual view Objects are wrongly paired between views for
more than 0.5 second. E.g. a white van and blue car is within the shared region; if the
white van in view 1 is paired with the blue car in view 2 there is a wrong correspondence
in the virtual view.

Wrong object classi�cation in virtual view An object is detected in the virtual view,
but with the wrong object classi�cation for more than 0.5 second. E.g. a vehicle
detected as human in the virtual view.

Non-existing object tracked in virtual view An object is detected in the virtual view,
but there is no object. This could be caused by noise being wrongly detected as humans
in both views. The non-existing object must be detected for more than 0.5 second.

These errors are observed in the virtual view, but are caused by errors occurring at module
level. These errors are addressed in the following section, and an overview of these errors and
overall system errors is given in Figure 8.4.

8.2.2 Types of Module Errors

The three modules foreground segmentation, single view tracking and correspondence are
responsible for the overall system errors. The foreground segmentation module is described
in Chapter 5, and the errors related to this module are:

Noise detected Noise is detected as a human or vehicle object.
Misdetection in one view An object within the shared region is detected in one view, but

not in the other.
Misdetection in two views An object within the shared region is not detected in both

views.
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The single view tracking module is described in Chapter 6, and the errors related to this
module are:

Wrong object classi�cation The object is classi�ed wrongly, which causes it not to be
paired by the correspondence module.

Track drifts The track smoothness constraints might cause a track to drift away from the
actual object.

Track switch A permanent track switch happens. This is identity switch between two
tracked objects.

Track lost Track is lost because the underlying motion model is not valid. The motion
model is that objects move with a constant velocity.

Track lost during occlusion The track is lost during inter-object occlusion, which should
be resolved by the use of probabilistic appearance models.

Track stolen by untracked object The track is �stolen� by an untracked object, which
typically happens near the image border. For instance, if an untracked vehicle steals a
track for a human, the object classi�cation of the track is wrong.

Bad track initialization The track is not initialized properly. This can be due to redundant
representation or late track initialization. Redundant representation is when several
tracks represent the object. This could be caused by poor detection of the object so it
is divided into several disjoint blobs, which the single view tracking module is not able
to merge. Furthermore, this error also covers the case where no track is created. An
object must be isolated before a track is created, which in some cases cause a late or no
track initialization.

The correspondence module is described in Chapter 7, and a single error is identi�ed for this
module:

Bad homography The correspondence of objects is wrong. This could happen if the planar
homography is not accurate enough, especially for visually very small objects.

8.2.3 Typical Error Relationship

Figure 8.4 presents an overview of the overall system errors and the module errors. Further-
more, the �gure shows the typical relationship between the module errors and overall system
errors. For example, a wrong object classi�cation can cause that no object is detected in the
virtual view (if the object classi�cation is only wrong in a single view), and it can cause a
wrong object classi�cation in the virtual view (if the object classi�cation is wrong in both
views).

8.3 Execution

The system is executed with the test sequences listed in Table 8.1. The foreground segmenta-
tion module uses the same parameters for all the sequences. However, the parameters are not
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Noise detected

Misdetection in one view

Misdetection in two views

Wrong object classification

Track drifts

Track switch

Track lost

Track lost during occlusion

Bad track initialization

Track stolen by untracked object

Bad homography

Overall system errors Module errors

No object in virtual 
view (totally)

No object in virtual 
view (partially)

Wrong object 
classification in 

virtual view

Non-existing 
object tracked in 

virtual view

Wrong 
correspondence in 

virtual view

Figure 8.4: The typical relationship between overall system errors and module errors.
The overall system errors are color coded for easier overview.

adjusted to give the optimal result, but instead adjusted so it is able to perform over several
hours. The parameters for the single view tracking and correspondence module are the same
for the three test sequences for the narrow view. The parameters are the same for the three
wide view test sequences, but di�erent from the narrow view parameters.
For each test sequence, the system produces an output video �le containing the tracking
results. Furthermore, a text �le for each tracked object is generated listing the tracking
results for the given track. The output video �le and text �les for each track are stored on the
DVD (} /tests/overall_system_test/ ). A �le containing the parameters used for the given
test sequence is stored in the same library.
The output video �le is inspected and all overall system errors are noted. A single error
corresponds to a single object. In cases tracking of an object causes several errors, the �rst
occurring error is noted if this error is responsible for the following errors. For each overall
system error, the module error that caused the overall system error is also noted. In this way,
it is possible to identify the most occurring types of errors. Errors for vehicles and humans
are kept separate so it is possible to analyze the performance related to the two object types.

8.4 Results

The results for the test sequences are shown as graphs in Figure 8.5. The graphs show the
overall system errors for each camera con�guration and object type. It is clear from the graphs
that the partial detection of the object is the most occurring error. As mentioned, the module
error that caused the overall system error is also noted during the test. Figure 8.6 shows all
the module errors related to human objects and vehicle objects. The �gure indicates that the
most occurring types of module errors are di�erent for the two object types.
As shown in Figure 8.4 there is a certain relation between the overall system errors and the
module errors, which is not expressed by the graphs in Figure 8.5 and 8.6. Therefore, the
most and second most occurring module error for each overall system error are listed in Table
8.2. Only the overall system errors where several errors occur are listed in the table. It is
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(b) Narrow view, vehicle (Total: 138)
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(c) Wide view, human (Total: 567)
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(d) Wide view, vehicle (Total: 129)

Figure 8.5: Overall system errors. The �ve error types are listed along the x axis and
the number of observed errors along the y axis. �Total� refers to the total number of
the given object type in the given camera con�guration.

seen from the table that the two most occurring module errors explains almost all overall
system errors. Table 8.2(a) shows the relation for tracking of humans. For humans, the most
occurring module errors are misdetection in one view and bad track initialization. Special
attention is put on these two errors during the discussion of the results related to humans in
Section 8.5.2. Table 8.2(a) shows the relation for tracking of vehicles, and the most occurring
module errors are bad track initialization and wrong object classi�cation. Special attention
is put on these two errors during the discussion of the results related to vehicles in Section
8.5.3.

8.4.1 Correctly Tracked Objects

Figure 8.5 and 8.6 only shows the errors, but does not illustrate how many objects are correctly
tracked. The percentage of correctly tracked objects is shown in Table 8.3(a). The average in
the table is 67.9 percent. However, from the table it is clear that the system performs better
for the narrow view camera con�guration. The main reason for this is that the system error
of partial detection of objects happens more frequently in the wide view. In the wide view
camera con�guration, when an object is large in one view it is small in the other view. Small
objects are more often misdetected than larger objects, and this causes partial detection of
objects. In the narrow view camera con�guration the objects are large in both views.
As mentioned, the partial detection of the object in the virtual view is the most occurring
system error. Figure 8.7 shows a typical example of this error type, where the human object
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(a) Human
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(b) Vehicle

Figure 8.6: Module errors. The module error types are listed along the x axis and
the number of observed errors along the y axis.

Overall system error No. 1 module error No. 2 module error
No object (totally) Misdetection in one view (46%) Bad track initialization (38%)
No object (partially) Misdetection in one view (72%) Bad track initialization (14%)
Wrong correspondence Bad track initialization (67%) Bad homography (14%)
Non-existing object Noise detected (96%) Wrong object classi�cation (4%)

(a) Human: Relation between overall system errors and module errors

Overall system error No. 1 module error No. 2 module error
No object (totally) Bad track initialization (83%) Wrong object classi�cation (17%)
No object (partially) Wrong object classi�cation (55%) Bad track initialization (36%)

(b) Vehicle: Relation between overall system errors and module errors

Table 8.2: The relation between overall system errors and module errors. Only the
relevant overall system errors are shown along with the most and second most occurring
module error. How often a module error occurs for an overall system error is shown as
a percentage.

Human Vehicle
Narrow view 74.4% 77.5%
Wide view 53.8% 65.9%

(a) All system errors. Average: 67.9 %

Human Vehicle
Narrow view 92.0% 86.2%
Wide view 85.5% 89.1%

(b) Ignoring partial detections. Average: 88.2%

Table 8.3: Percentage of correctly tracked objects in the virtual view.
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(a) View 1 (b) Virtual view (c) View 2

Figure 8.7: Typical example of partial detection of an object in the virtual view.

is misdetected in view 1. This causes the trajectory of the person's track to break in the
virtual view. However, a few frames later the person is detected once more in view 1 and he
is once more detected in the virtual view. Because the person is still tracked in view 2 this
type of error is not as critical when compared with not detecting the object in the virtual
view at all. Given this argument, it can be argued that it is justi�able to ignore the error
type of partial detection of an object in the virtual view. Ignoring this error type results in
an increase of the percentage of correctly tracked objects. This is listed in Table 8.3(b), and
the average percentage of correctly tracked objects is increased to 88.2 percent. Furthermore,
when comparing the system's performance in the narrow view and wide view using Table
8.3(b) it is almost the same.

8.5 Discussion

The following discusses the results and the errors presented in the previous section. The dis-
cussion is divided into four parts. The �rst part focuses on the system's overall performance
and performance over time. Afterwards, results for tracking of human objects are discussed.
This is followed by discussing the vehicle tracking results. The two objects are kept sepa-
rate because di�erent issues in�uence the tracking results. Finally, how the system manages
detected noise is discussed.

8.5.1 Overall Performance

It is observed when inspecting the test data, given that the foreground segmentation is good
and the tracks are created correctly, the tracking performs well. The correspondence of both
vehicles and humans are rarely incorrect despite of the inaccuracies related to the homography
mappings of the Matthews Lane dataset. This is also the case during occlusion of foreground
objects. A tracking example is shown in Figure 8.8, where the four moving vehicles are
correctly detected in the virtual view despite of occlusion. Note that noise is present in view
2, but this is not detected in the virtual view, which is an advantage. In general for the
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(a) View 1 (b) Virtual view (c) View 2

Figure 8.8: Correct tracking of four moving vehicles during tracking. The noise
present in view 2 are not detected in the virtual view.

given scene most occlusion is rather short term, because the objects are in transit. Long term
occlusion occurs e.g. when people move in groups, but given that it is possible to split the
group, the tracking still performs well. However, the few times a track is lost during occlusion,
the occlusion has been long term.
Despite partial detection in the virtual view occurs often, a signi�cant part of the objects'
trajectories are detected. Due to the accuracy of the view invariant representation (see the
test in Section 7.5 on page 95) the system provides a solid foundation for doing view invariant
analysis and detect potentially dangerous situations. An evaluation of the overall system
including view invariant analysis is carried out in Chapter 9 on page 117.
Compared to related work on tracking, 67.2 percent average correctly tracked objects is rather
low. However, tracking results in related work are typically based solely on test sequences
lasting a few minutes and not hour long sequences. Because the system is tested with long
sequences, the quality of the foreground segmentation is not optimal, which do cause a sig-
ni�cant drop in performance. However, testing with long sequences is needed to measure the
system's performance during the day. Furthermore, unlike related work this system natively
holds a view variant and view invariant representation of the objects. The representations
can be used for behavior analysis and object identi�cation.

Performance over Time

The system's performance over time can also be characterized using the overall system test.
If ignoring the error of partial detections of objects in the virtual view, the performance for
tracking of an object type is the same for the given camera con�guration at di�erent times of
the day. However, when partial detections of objects are considered, the system's performance
varies throughout the day. Dark and large cast shadows from background objects caused by
bright sunny weather as shown in Figure 8.9 causes many partial tracks because of either poor
detection or misdetection within the shadow region.
In test sequence no. 3, which is recorded from 11:00 to 12:00, the sun is very bright mak-
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ing objects more similar to the background. The foreground segmentation is especially poor
during the �rst 15 minutes of this test sequence and many overall system errors occur. Af-
terwards, the sun is not nearly as bright, and the segmentation quality increases signi�cantly
and likewise for the overall system performance. These issues caused by a very bright sun is
not part of the foreground segmentation test in Section 5.10 on page 56, where the weather is
changing between sunny and cloudy throughout the day. A second explanation of this issue
is the use of layers in the foreground segmentation; a general observation from the foreground
segmentation test is that layers are created for areas in the scene where many people move
frequently. Due to the high tra�c of objects they are absorbed into the background model
and not segmented correctly until the layers are deleted. In test sequence no. 5, which is
recorded from 18:00 to 19:40, at the end of the sequence it is twilight, and the objects start to
appear more darker and similar to the background. This makes the objects harder to detect
and causes a drop in performance.

8.5.2 Human Objects

As seen from Table 8.2(a), the main problem with tracking of human objects are misdetection
and bad track initialization, which are discussed �rst in the following. This is followed by
considerations regarding cast shadows and human groups, which typically are problems for a
tracking system.

Misdetection

When the misdection of an object is similar to that illustrated in view 1 in Figure 8.7, the
single view tracking module is not able to detect the human object. However, it is often
the case that the human object is tracked in the other view, which is seen by the rather low
errors for misdetection in two views in Figure 8.6(a). As mentioned, misdetection also occurs
when the shadow from background objects is dark and large; it is hard to detect small human
objects moving in the shadow even by manually inspecting the video. An example is given in
Figure 8.9. Better performance of the foreground segmentation module is needed in order to
resolve this issue. A possible solution could be to make a feedback loop from the tracking of
objects to the foreground segmentation; e.g. codewords are made smaller in the region where
the tracking predicts an object to be located.

Bad Track Initialization

Bad track initialization in the human case happens when e.g. a vehicle has just parked and
a human object enters in a way so that it is merged with (or partly occluded by) the parked
vehicle. The human object is considered as part of the vehicle object by the tracking module
and is not created as a track before the human object separates from the vehicle. This causes
a late track creation and hence yields a partial detection in the virtual view. If the human
object never separates no track is created, and this would cause no detection in the virtual
view.
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Figure 8.9: Example of strong background shadow making detection of human objects
hard. Two views are shown with four people. Arrows indicate how the people correspond
between the two views. When the objects are visually large in a view they are easier to
detect.

Moving Object Cast Shadows

The cast shadows from human objects are not always suppressed by the Codebook method.
The shadow do not cause a problem if it is tracked along with the human object, which is
typically the case as shown in the foreground mask in Figure 8.10(a). However, in some cases
the cast shadow is detected as a disjoint blob. When the shadow is disjoint and of su�cient
size, a track is created for the shadow. This is redundant representation of the human object.
This is not an issue for vehicles due to their size and shape. The shadow issue for humans
occurs most often during evening, where the cast shadows are long. When the shadow is
tracked separately, it might be matched with the human object in the other view using the
group correspondence algorithm (See Section 7.3.3 on page 88). Hence, two human objects
instead of a single human object are detected in the virtual view, but the cast shadow does
not result in a lost track for the true human object. If occlusion between moving objects
(inter-object occlusion) does happen, the track for the shadow is the only track that might
be lost. Di�erent approaches for solving the shadow issue by shadow suppression are tested,
but as described in Section 5.8 on page 50 none perform well over longer periods.

Human Groups

The correspondence of humans utilizes a modi�ed version of the correspondence algorithm
presented in [Hu et al., 2006]. The modi�ed version makes it possible to detect groups and
an example is shown in Figure 8.10. Despite two persons being tracked as one in view 2,
two trajectories are available in the virtual view. The segmented cast shadows in view 1 and
the holes in the segmentation in view 2 does not cause a problem. Furthermore, the person
leaving view 1 and the small vehicle is correctly tracked. This makes it possible to perform
view invariant analysis and e.g. detect if the vehicle is about to collide with the human group.
When many people enter the scene at the same time, the modi�ed version of the correspon-
dence algorithm is not able to correctly detect the individuals in the group. In the test data,
this occurs for the largest groups, which varies from six to nine people. However, the location
of the group is detected. A more feasible solution could be to use the footage region of the
large group and then mark this region as a crowd instead of �nding the individual ground
points. The footage region should be reliable in this situation because the group occupies a
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(a) View 1 (b) Virtual view (c) View 2

Figure 8.10: Correct tracking of a group of people. Furthermore, an isolated person
and a vehicle is correctly tracked.

large area on the ground plane.

8.5.3 Vehicle Objects

As seen from Table 8.2(b), the main problem with tracking of vehicle objects are wrong object
classi�cation and bad track initialization, which are discussed �rst in the following. This is
followed by considerations regarding long term occlusion of vehicles which are growing in size.

Wrong Object Classi�cation

Unlike for human objects, vehicles are not completely misdetected by the foreground segmen-
tation. This is probably due to the size of the vehicle. However, the foreground detection of
the vehicle might be rather poor. In these cases, the vertical projection also becomes steeper
and thus more similar to that of a human. The metric used for object classi�cation is sensitive
to this, and it occurs that vehicles are wrongly classi�ed as a human object. Therefore, the
vehicle is not detected in the virtual view.
Especially when the vehicle is visually small and poorly detected by the foreground segmen-
tation, it is misclassi�ed as a human as explained above. However, the use of the temporal
constraints on the object classi�cation means that the vehicle is often correctly classi�ed as
a vehicle when it becomes visually larger. Therefore, wrong object classi�cation most likely
only causes partial detection of the vehicle in the virtual view. However, in the narrow view
camera con�guration the time period the vehicle is within the shared region is rather short,
and therefore any wrong object classi�cation is rarely corrected. This is one of the reasons
for having more total misdetections than partial in the narrow view (See Figure 8.5(b)).

Bad Track Initialization

The wrong object classi�cation could also result in the vehicle track being splitted into several
human tracks using the vertical projection method (See Section 6.4.1 on page 74). If this
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(a) Correct tracking of vehicle (b) 2.5 seconds later: Redundant representation

Figure 8.11: Redundant representation due to poor detection of the vehicle.

happens for a longer time period, the created human tracks become stable and there is a
wrong object classi�cation and redundant representation of the vehicle. This is illustrated in
Figure 8.11, where the vehicle is tracked as one and then splits into several human tracks.
The vehicle might not be paired or the footage region for the vehicle in the virtual view is
not estimated correctly. This is an example of bad track initialization, which is the second of
the two main module errors for vehicles. As mentioned, the bad track initialization is partly
caused by the wrong object classi�cation, which is sensitive to poor foreground segmentation.
Bad track initialization often occurs when the vehicle enters the scene in the narrow view
camera con�guration. If it is poorly detected it might be splitted into several human tracks
as explained above before the vehicle is completely within the scene. When the bad track
initialization occurs in these situations, the vehicle is not detected at all in the virtual view.
This further explains why the total misdetection of vehicles is larger than the partial misde-
tections in the virtual view for the narrow view camera con�guration (See Figure 8.5(b)). In
general for both camera con�gurations, if the vehicle is occluded by several human objects
when it enters the scene, it might �steal� the tracks and is therefore represented by several
human tracks and is not detected in the virtual view.
It is observed that when bad track initialization occurs, it is harder to recover from this
situation compared to wrong object classi�cation. Whereas wrong object classi�cation is
most likely to result in a partial detection in the virtual view, bad track initialization results
in total misdetection in the virtual view. This point is con�rmed by Table 8.2(b), where the
order of the two module errors are switched for total and partial misdetection in the virtual
view.

Long Term Occlusion Related Issue

Long term occlusion is in some cases an issue when tracking vehicles. The problem is that a
vehicle grows quickly in visual size during occlusion compared to humans. The vehicle grows
faster because it is moving at a higher speed and its shape can change signi�cantly e.g. when
making a turn. The �new� pixels that appear when the vehicle grows are not assigned to the
vehicle track by the probabilistic appearance models. The result is many unassigned pixels.
If a track overlaps with these pixels it simply takes the unassigned pixels and the vehicle is
represented by several tracks. This issue is aggravated if the vehicle is not completely within
the scene and is under occlusion. A possible solution is to add a step in the occlusion handling,
which assigns all unassigned pixels to a track and maybe in favor of vehicle tracks.
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8.5.4 Detected Noise

It occurs that noise is detected by the foreground segmentation module, which can not be
removed by the noise threshold. The noise is generally classi�ed as human instead of vehicle.
This is because the vertical projection of noise typically is steep like the vertical projection
of a human. Looking at the module error of noise detected in Figure 8.6(a) and 8.6(b), it is
clear that noise is rarely detected as a vehicle. This is furthermore illustrated by the overall
system error of non-existing objects tracked in the virtual view in Figure 8.5.
When the noise is detected in one view only, it is rarely paired with any object in the other
view. Hence, no object is wrongly detected in the virtual view, which is also the case for
the noise in view 2 in Figure 8.8. If noise should be detected in the virtual view, it must
be located at the same area in the scene for the two views. This happens when a vehicle
parks and is absorbed as a new layer into the background model as explained in Section 5.7.2
on page 48. The vehicle fades away over a period of time, and thus some noise is detected.
The parked vehicle is located at the same area for the two views, and this could result in
noise being wrongly detected as a human object in the virtual view. Similarly, when a parked
vehicle starts moving it might leave behind a ghost, which could be detected in the virtual
view. However, noise not detected with regards to a parked vehicle is unlikely to cause a
detection of an object in the virtual view.

8.6 Summary

The main �ndings of the overall system test are:

• The system is tested using six test sequences with a total length of 385 minutes.
• Five overall system errors are identi�ed during the test. An overall system error is

caused by a module error and their relationship are noted.
• 67.9 percent is the average percentage of correctly tracked objects. Ignoring partial

detections of objects, the average percentage increases to 88.2 percent.
• The main issues related to tracking of humans are misdetection by the foreground seg-

mentation module and late track creation due to merged objects.
• The main issues related to tracking of vehicles are wrong object classi�cation and re-

dundant representations of the vehicle object.





Chapter 9
Evaluation by View Invariant Analysis

This chapter describes potential uses of the system for increasing tra�c
safety. Furthermore, a module for doing view invariant analysis is intro-
duced to demonstrate the applicability of the system. From the view in-
variant representation of objects, events are de�ned that trigger alarms in
potentially dangerous situations.

9.1 View Invariant Analysis

The purpose of the system is to provide a solid foundation for obtaining situational awareness.
As mentioned in Section 2.1 on page 13, situational awareness can be described by three levels
of understanding, where the highest level is the ability to project object states and events into
future scenarios. The system covers the �rst level and some aspects of the second level by doing
robust tracking of both humans and vehicles in temporal and spatial domain. Furthermore,
the system provides the information needed to understand the signi�cance of objects and
events in a tra�c environment. However, to reach the highest level of situational awareness
a new module is needed on top of the existing system. The view invariant analysis module
therefore adds a new level of interpretation to the system and provides an external interface
for end users as depicted in Figure 9.1.

Cam 1

Cam 2

Foreground 
segmentation

Single view 
tracking

Correspondence View invariant 
analysis

Foreground 
segmentation

Single view 
tracking

Database storage

End user

Figure 9.1: Overview of the system highlighting the view invariant analysis module.

A view invariant representation of objects is practical since measures such as distances and
sizes of objects have meaningful relationships. Without it, it would be di�cult to understand
the signi�cance of objects and events and to analyze the interaction of objects. A major
advantage is also that the same analysis approach can be applied in any camera setup.
The needed complexity of the view invariant analysis depends on the application. The applica-
tion de�nes the events that must be recognized and how accurate and detailed the recognition
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should be. For instance, in some scenarios it might be su�cient to recognize coarse events
to direct the attention of a human operator, while fully autonomous systems would require
more detailed event recognition to allow the system to make decisions of its own. A coarse
event could be a vehicle stopping on the road, while a detailed event could be prediction of
collisions between objects. Several parameters can be considered in object event recognition
such as position, size and velocity. These are all part of the object representations produced
by the system.
The following demonstrates the applicability of the system using view invariant analysis. First,
an example of collision detection is presented using the HERMES dataset, a description of the
dataset can be found in Appendix D.2. Following this, a more end user oriented demonstration
is presented using both recorded sequences and live camera input fromMatthews Lane dataset,
which is descriped in Appendix D.1.

9.2 Collision Detection

An example of prediction of a collision using view invariant analysis is shown in Figure 9.2.
The example is based on choreographed data from the HERMES dataset. Two pedestrians
are talking and crossing the road at the same time at a measured speed of 2.0-3.0 km/h.
At the same time, a car is driving towards them with a measured speed of around 10.0
km/h. Potential collisions are detected as the intersections of the velocity vectors of the
objects. Velocity vectors are depicted as red arrows, and intersections are marked by yellow
crosses. By extending the velocity vectors, two intersection points are detected indicating a
possible collision. Furthermore, from the view invariant analysis it can be shown that the
distance between the front of the car and the nearest pedestrian is decreasing as an additional
indication of a possible collision. At the given time in Figure 9.2, this distance is approximately
2.7 meters. In this sequence both pedestrians stop and take a step back as the car passes
by. This example shows that it is possible to detect collisions from the object representations
produced by the system, and the next step would be to prevent the accident.

9.3 Demonstration using View Invariant Analysis

The following view invariant analysis module demonstrates the applicability of the system.
The examples used for demonstration show potentially dangerous events. The examples are
based on unchoreographed sequences from both the wide and narrow view con�guration of the
Matthews Lane dataset. Since unchoreographed sequences are used, no real dangerous events
occur. The de�ned events are therefore very coarse and frequently occur in the sequences.
Three events are de�ned to trigger an alarm:

Human and vehicle on road This event triggers an alarm if both a human and vehicle are
on the road a the same time.

Vehicle stopped on road This alarm is triggered by a vehicle stopping on the road. Since
vehicles should be allowed to park at the road side, the alarm is only triggered in a
prede�ned area of the middle of the road.
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(a) View 1 (b) View 2

(c) Virtual view

Figure 9.2: Collision detection in the HERMES dataset. A red arrow depicts the ex-
tended velocity vectors of the tracked objects, and the yellow crosses show intersections
as an indication of a possible collision. Additionally, the distance between the front
of the car and the nearest pedestrian can be measured as decreasing, which further
indicates the possibility of a collision.

Speeding human To demonstrate the system's ability for speed detection, an alarm is trig-
gered in the event of a speeding human. The speed limit is set to 15 km/h meaning
that mainly bicyclists and skateboarders are detected. The speed is computed from the
velocity vector. The speeding human event is chosen in the absence of speeding vehicles
in the available datasets.

The purpose of these coarse alarms is to direct the attention of a human operator. Therefore,
it is relevant to de�ne an interface for a human operator that is intended to ease the task
of monitoring tra�c. The interface of the view invariant analysis module shows the camera
inputs for the system and a top-down view of the given scene. If a dangerous event occurs an
alarm is raised. When an alarm is raised all objects involved in the event is marked by a red
bounding box in the camera inputs. This information is only shown if an alarm is active in
order to avoid tiring or distracting the user unnecessarily. Furthermore, it is possible to hide
the identity of objects by disabling the camera inputs and only present the top-down view
representation for the user.
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The same view invariant analysis is tested on several di�erent sequences, and the outputs are
available on the DVD (} /tests/evaluation/ ). Figure 9.3 and Figure 9.4 show examples of
alarms being triggered in the module interface by view invariant analysis. The �gure text
explains the depicted scenes and alarms.
In addition to testing with recorded data sequence, an online version of the system is made.
This version receives live input from the cameras on Matthews Lane, and with few objects in
the scene it runs near real-time on a 3Ghz computer with 2GB ram. For testing the system
live track re�nement (see Section 6.6.2 on page 79) is disabled since this is a computational
expensive process. This a�ects the robustness of the system, but it is not essential for running
the system. If several objects enters the scene, the performance drops which reduces the frame
rate. The result of this is that tracks are more easily lost and that the Codebook background
subtraction has di�culty adapting to rapid illumination changes. However, when the system
runs near real-time the results of the online test is comparable to the overall test results.

Figure 9.3: Recognition of events in the wide view con�guration of the Matthews
Lane dataset. A �human and vehicle on the road� alarm is raised by the yellow van
passing a human crossing the road. The person is di�cult to see with the human eye
due to the shadow of the trees, but he is detected correctly in both views by the system.
Note that, in the top-down view, a human is walking on the sidewalk, but he is not
marked by a red bounding box in the alarm since he is not part of the event i.e. on the
road.

9.4 Evaluation

For demonstrating the view invariant analysis, interesting sequences that contain the de�ned
dangerous events have been selected. The view invariant analysis preforms well in these
sequences, both by recognizing the de�ned events, but also by not raising false alarms when
no events occur. The overall system errors de�ned in Section 8.2 on page 102 can make the
view invariant analysis miss dangerous events or raise false alarms. However, an system error
that cause an object only to be partially tracked would still in many cases result in correct
event recognition. In general, if only a part of the object's trajectory is available, it is still
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Figure 9.4: Recognition of events in the narrow view con�guration of the Matthews
Lane dataset. Two alarms are activated in the scene. A car is stopping on the middle
of the road to perform a three-point turn and therefore triggers the �vehicle stopped
on road� alarm. At the same time a skateboarder drives through the scene with an
estimated speed above 15 km/h, which triggers the �speeding human� alarm. The
�human and vehicle on road� alarm is not triggered since the skateboarder is outside
the de�ned road area. Note that the bounding box of the skateboarder is correct even
though he is occluded by a parked vehicle in the rightmost view.

possible to project the tracking information and establish a high level of situational awareness.
The events recognized by the view invariant analysis module is rather basic, since this work
has focused more on the foundation for the view invariant analysis than the actual analysis.
However, the demonstrations show the applicability of the system and more comprehensive
analysis could be applied. For instance, from the position and velocity a movement pattern
could be derived, e.g. if a pedestrian is walking straight on the sidewalk for a period and then
starts turning towards the road, it could indicate that the pedestrian is about to cross the road.
Also, in [Park and Trivedi, 2006] a temporal-spatial activity space is de�ned around objects
using position, size, velocity and the context the objects are in. The context is considered
since the personal space is larger in open areas than in crowded areas according to social
psychology. From this activity space, schematic event grammar is used to describe spatial-
temporal relationships between person and vehicle tracks. This is used to enhance situational
awareness for application such as collision detection or people behavior control. These types
of behavior analysis could be applied on top of the developed system.
Based on the results of the overall system test, the system developed in this work contributes
with robust multi-view correspondence of both humans and vehicles. This provide a better
basis for representing both object types in the view invariant domain compared to related
work. The representations produced by the system greatly simplify the task of event recogni-
tion, since each object representation holds the parameters needed for view invariant analysis.
In the end, this leads to a solid foundation for gaining situational awareness in tra�c envi-
ronments.
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Additionally, the system natively holds a view variant and view invariant representation of
objects. This is useful because the view variant domain allow extraction of meaningful object
images which the view invariant does not. This ability is important for object identi�cation
e.g. reading the license plate of a car or saving a photo description of a person.

9.5 Summary

The main �ndings from the evaluation of the system using view invariant analysis are:

• The system provides a foundation for establishing situational awareness based on track-
ing of both humans and vehicles.

• The system natively holds both a view variant and view invariant representation of
objects that eases the task of event recognition and object identi�cation.

• The view invariant analysis module demonstrates the applicability of the system by
recognizing potentially dangerous events and presenting alarms for an external user.



Chapter 10
Conclusion

The following presents the conclusion of the thesis based on the thesis de�-
nition. This includes presentation of the main contributions and developed
methods of the thesis. The chapter is ended with an outlook and suggestions
for future work.

10.1 Conclusion

In the introduction, the initial problem is formulated as �How can computer vision-based
visual surveillance be applied in order to increase tra�c safety?�. As a �rst step in answering
this question, the problem analysis states that a visual surveillance system should incorporate
situational awareness in order to detect and predict accidents. This is complicated in problem
areas such as busy urban locations with humans and vehicles as the two main object types.
Situational awareness must be obtained from the problem area and include understanding of
both object types and their interaction.
Very little work has been done on tra�c monitoring of both humans and vehicles since most
related work focus on either humans or vehicles only. Also, from the related work it is
clear that the use of multiple cameras is a signi�cant help for resolving challenges such as
occlusion. The main goal in the thesis is therefore �to enhance automatic situational awareness
by building a system capable of robustly tracking humans and vehicles through their activities
and interaction in an unconstrained outdoor environment using multiple surveillance cameras�.
The thesis presents a complete system for visual surveillance. The system is divided into
modules where each module handles a signi�cant stage in a computer vision framework, and
each module receives input from a lower level module in the system.
A major problem of all surveillance systems that monitor unconstrained environments is
occlusion, and solving this issue using a single camera setup is an almost impossible task.
The use of multiple views is therefore essential within the problem area of this work. It does
not only help to resolve occlusion, but it also improves the accuracy with which the position
and size of objects can be determined.
When multiple views are used they must be registered in order to co-operate. The camera
registration is based solely on homography mapping. This makes the camera registration
process easier compared to systems using full camera calibration. This also makes the system
independent of world coordinates, in case view invariant analysis is not required. As an
additional property of the system, the methods for correspondence of objects between views
are chosen and developed to be robust towards inaccuracies in the homography mapping since

123



124 Chapter 10. Conclusion

perfect plane-to-plane mapping can not be guarantied in most realistic setups.
The foreground segmentation do not perform as well as in related work. However, the cause of
this is mainly due to the length and complexity of the utilized dataset. A 78 hour sequence of
the Matthews Lane dataset is used for testing. For this sequence, foreground segmentation is
shown to perform consistently. A signi�cant cause of segmentation errors is due to background
camou�age of objects. A dedicated shadow suppression module is introduced to improve the
foreground segmentation. Two shadow suppression methods are tested, but not found to
perform well enough.
In reviewing multi-view surveillance systems a method based on the principal axis and a
method based on the footage region stand out as prominent methods for doing correspondence
between views of humans and vehicles, respectively. In this work, these two methods are
combined by extending the existing methods. One of the main contributions of this work is
therefore methods for doing robust multi-view correspondence of both humans and vehicles.
For vehicles, a scheme for handling several occlusion scenarios using multi-view correspondence
is presented. The occlusion handling includes development of a new method for determining
vehicle correspondence using a plausible ground point when no correspondence history is
available e.g. at initialization. Additionally, a method for reconstructing vehicles under
severe occlusion using probabilistic appearance models is presented.
For humans, the principal axis method is extended to handle groups, since this is not done
by the existing principal axis method. The problem is that inter-object occlusion can cause a
group to be tracked as a single human. This is solved by a modi�ed correspondence algorithm,
that do correspondence of humans which are left unpaired by the original algorithm. This
allows accurate location of individuals in the groups, both in the view variant and view
invariant domain.
Humans and vehicles are handled di�erently, but for both a view invariant representation
of location, size and velocity is produced. The view invariant representation is essential for
doing proper behavior analysis and understanding the interaction of objects, since it represents
objects in a domain where the relations between object are meaningful. Furthermore, the view
invariant representation means that the same analysis can be applied for any camera setup.
The system's potential for providing a base for obtaining situational awareness is shown using a
view invariant analysis module. It is shown that the system is capable of predicting dangerous
situations like collisions between human and vehicle objects. This module also demonstrates
an interface for an external user e.g. a human operator monitoring tra�c. The interface
directs the attention of the user by raising alarms when dangerous events occur.
What sets this work apart from most of the related work is the extent and complexity of the
data used for testing. The system is tested with several sequences of unchoreographed tra�c
environments. In total, the 385 minutes of test data used for the overall system test contains
1351 humans and 267 vehicles within the shared region of the two cameras. Furthermore, the
system is shown to work in both wide and narrow view camera con�gurations.
From the overall system test �ve overall system errors with varying degree of seriousness
are de�ned. The test shows that 67.9 percent of the object are tracked without any errors.
Furthermore, by not considering the least serious error, but also most occurring error, the
percentage of correctly tracked objects improves to 88.2 percent. The least serious error is
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when an object is not tracked for the full duration of its stay within the shared region. At
module level, most errors are caused by poor foreground segmentation. This leads to wrong
object classi�cation and track initialization.
By building a multi-view system capable of tracking humans and vehicles in an unconstrained
outdoor environment the main objective of this thesis is met. The system is a signi�cant
step towards automatically achieving situational awareness through visual surveillance, but
in order for the system to operate in a real world scenarios, further robustness should be built
into the system.

10.2 Outlook
The following presents suggestions for future work. Though the higher level modules of the
system are robust towards some errors on the lower levels, the most severe lower level errors
propagate to the higher levels. This is the case with errors in the foreground segmentation,
and it is therefore interesting to improve the foreground segmentation module. A suggestion
for improving the segmentation could be by introducing a feedback from the tracking module,
e.g. by increasing the sensitivity of the codebooks in areas where objects are predicted to
be located. It would also be interesting to test the system using uncompressed inputs as
experimental test shows that this can improve the foreground segmentation.
The tests show poor performance for groups of more than six humans and crowds are in
general not handled properly by the system. Because of this, it is interesting to look at new
ways for handling large groups and crowds. A solution could be to use the footage region for
groups or crowds that are too large or dense to be tracked using the principal axis method.
The system does not run near real-time with several objects in the scene since it runs as
a single-thread application. However, by running some modules separately while disabling
others, it is determined that each module can run near real-time. In future work, the modular
system structure would therefore allow the system to be distributed on several computers for
near real-time processing.
The detection of an accident is a prerequisite in order to take the adequate measures in avoid-
ing the accident. However, the actual accident prevention has not been addressed in this work.
As a next step, it would be interesting to look at ways of alerting the involved parts. Road
signs with build-in speed control that signal drivers exceeding the speed limit already exist
[Hillerød Kommune, 2004], and solar powered markers on the road are already in use. Simi-
larly, one could imagine that markers on the road or poles at the road side could �ash a yellow
light if an accident is about to happen. Furthermore, the increasing amount of technology in
vehicles and recent work with in-vehicle warning systems [Aalborg University, 2007] indicate
that it in the future will be possible to send warnings signals to vehicles to alert the driver
about a potential collision ahead. These solutions only mention a way of alerting the involved
parts, but a system that more actively intervenes could also be considered. For instance, if
it is possible to communicate with the vehicle it could also be possible to control it and e.g.
take control to bring the vehicle to a stop or steer around pedestrians in an emergency. Also,
the system could control tra�c lights and e.g. by changing the signal to red in all direction
if a speeding or possible drunk driver is approaching the intersection. With the developed
system as foundation, such solutions could be used for increasing tra�c safety.





Appendix A
Review of Miscellaneous Methods

This appendix contains reviews of the relevant literature on background
modelling methods, shadow suppression methods and tracking methods.

A.1 Background Modelling Methods

In Section 5.2.1 on page 40, the Mixture of Gaussians (MoG) and Codebook method is
presented as solutions for background modelling. The following describes and analyzes six
additional methods for background modelling. As pointed out in Section 5.2.1, the actual
di�culties lie in creating and maintaining a robust background model. Therefore, the following
lists some of the most prominent background modelling methods found in the literature.

Unimodal A single Gaussian is a simple, unimodal way of modelling the variation in color
and intensity for a pixel. This method is employed in the P�nder algorithm
[Wren et al., 1997] and works acceptably within constrained areas. It is only capable
of modelling a very static background such as an indoor o�ce. Despite the use of the
YUV color space making it more robust towards changes in light, this approach is not
suitable for dynamic environments such as outdoor scenes. Also, a pertubation test in
[Chalidabhongse et al., 2003] rules out this method in favor of the Codebook method.

Bimodal The W4 system [Haritaoglu et al., 2000] uses what they call a bimodal background
model for outdoor environments. The minimum and maximum intensities and the
largest allowable intensity di�erence between two consecutive frames, determined over
a training period, constitutes a computationally fast method. To model e.g. a waving
tree branch in front of a light sky, variation around the minimum and maximum values
is allowed. To update the background model, W4 employs a �change map� keeping track
of e.g. how often the pixels are classi�ed as foreground and background. However, for
modelling the dynamic environments used in this work, this method is insu�cient.

Median �lter The median �ltering method is a very simple idea, based on the assump-
tion that a pixel is background more than half the time. The current background
model is then based on the N latest frames. An example of its use can be seen in
[Cucchiara et al., 2003]. The size of N then uniquely determines the applicability of
the model. If N is too large, adaptation is too slow, and if N is too small, it can-
not be ensured that the majority of the pixels belong to the background. Instead of
calculating the median every time, optimized methods exist to approximate the me-
dian recursively, making this method less computationally demanding. A survey in
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[Sen-Ching et al., 2004] rules out the median �lter, also with approximation, in favor of
the MoG method.

Kernel estimation method In [Elgammal et al., 2000], a non-parametric way of building
a background model that uses the very recent history information is presented. A kernel
estimator is used to estimate the probability density function that a pixel has a distinct
intensity value. The kernel estimator function is a multivariate Gaussian density func-
tion where independence between the di�erent color channels is assumed. It is claimed
that this generalization of the Gaussian mixture model allows for more accurate estima-
tion of the actual density function by only concentrating on very recent information and
�forgetting� about the past. A pertubation test in [Chalidabhongse et al., 2003] rules
out this method in favor of the Codebook method.

Kalman �lter A rather di�erent approach can be taken by using a Kalman �lter to predict
the pixel value. The prediction is based on a number of previous frames. The idea
is that the prediction is based on background pixels and if the real value is far from
the prediction, a foreground object is likely to occupy that pixel. Reversely, if the
prediction is not far from being correct, a background pixel has been observed. A
possible issue could be that if a foreground object occupies a pixel for a long time, the
prediction might be based on this instead of the background, resulting in a false positive
recognition of foreground. In [Zhong and Sclaro�, 2003], where this method is proposed,
the state prediction is only based on a single previous state. However, the survey in
[Sen-Ching et al., 2004] rules out the Kalman �lter in favor of the MoG method.

Eigen backgrounds The method of using eigen backgrounds for background subtraction
is based on a series of images taken in di�erent situations, spanning the scope of the
application [Oliver et al., 2000]. These images are converted to an eigenspace image
background model. The construction of this model can be done with foreground objects
present, as these are not present for a long time and are typically small. The dimension-
ality of the model is reduced by the use of Principal Component Analysis to keep the
most information expressed in variance. The resulting eigenspace is then easy to use to
describe the static part of the scene as a weighted sum of the eigenspace basis vectors.
It is contrarily hard to describe the portions of the image containing foreground objects
by this eigenspace model and a threshold can be set to separate foreground and back-
ground pixels. As the eigen background method requires that representative pictures
are taken of the scene, this can not be used for highly dynamic and changing scenes.

A.2 Shadow Suppression Methods

In Section 5.8.1 on page 51, two methods are presented as the most interesting. However,
several other methods exist for shadow suppression, and a review of these are presented in
the following.
A commonly used approach to shadow suppression is segmentation based on color and in-
tensity information, which is emphasized by [Prati et al., 2003]. [Prati et al., 2003] presents a
survey of moving shadow detection approaches along with a comparison of four selected meth-
ods that are representative for di�erent overall approaches in the reviewed work. The selected
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methods cover deterministic and statistic methods for determining class membership, where
the deterministic methods covers two non-model based methods, and the statistical methods
includes both a parametric and non-parametric method. Of the four compared methods,
a deterministic non-model based method from [Cucchiara et al., 2001] is deemed the best
general-purpose solution. Some of the other compared methods can out-perform the selected
method in certain restricted scenes, like indoors or assuming low object speed, but in an un-
constrained scene it is not possible to apply any of those assumptions. The selected method
relies solely on comparing the current foreground with the background using an HSV thresh-
old scheme. However, color and intensity are seldom by itself enough to do proper detection
of cast shadow, since self shadow and dark objects in many cases are close to inseparable from
cast shadow in the HSV color space. Therefore the following analysis reviews a number of
approaches that rely on more than just color and intensity information. Also, the methods
reviewed in the following are either newer than or not reviewed in [Prati et al., 2003].

Auxiliary scene information The method in [Zhao and Nevatia, 2004] uses knowledge
about the sun's position to project an ellipsoid modelling a human onto the ground
plane. The projection of the ellipsoid is an ellipse on the ground plane in which shadow
is segmented using an intensity threshold. In this way, information about the time of
day, date and geographical location is utilized for suppressing shadow. To utilize the
sun's position, its exact position relative to the position of the cameras is needed, which
cannot be derived without knowledge of 3D world coordinates. The method therefore
con�icts with the goal of not being dependent on full camera calibration as stated in
Section 2.7.1 on page 25.

Appearance models The multi-view geometry method in [Keck et al., 2006] is a simpli�ed
method of the work presented in [Jeong and Jaynes, 2005]. In addition to
[Keck et al., 2006], [Jeong and Jaynes, 2005] applies an appearance model for the shadow
pixels. The shadow appearance model is build online from a mixture of Gaussians when
an object enters the scene. Though e�ective, the appearance model approach is only
proven to work under restrictive conditions such as indoors with narrow views and
uniform colored surfaces.

Texture and regions The work in [Javed and Shah, 2002] utilizes that shadow regions re-
tain some of the texture and color information of the background. The method works
stepwise with the goal of classifying pixels into cast shadow, self shadow and dark
object regions by comparison with the background. Potential shadow is found as re-
gions with low intensity, followed by K-means color segmentation that divides potential
shadow into the three region types. Finally, the cast shadow is separated from the other
regions by a gradient approach that compares the texture of the regions with the back-
ground. In [Javed and Shah, 2002] they report di�culty with separating cast shadow
and self shadow, causing object segments to be removed in 5 percent of the frames.
In [Javed and Shah, 2002] shadows are removed in 70 percent of the frames, and in 25
percent no shadow is removed.

Model based As mentioned earlier, [Zhao and Nevatia, 2004] exploit ellipsoid models of hu-
mans for shadow suppression. In [Koller et al., 1993] geometric 3D vehicle models are
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure A.1: Object representations. (a) Centroid. (b) Multiple points. (c) Bounding
box. (d) Bounding ellipse. (e) Part-based multiple patches. (f) Object skeleton. (g)
Complete object contour. (h) Control points on object contour. (i) Object silhouette.
Figure from [Yilmaz et al., 2006].

applied. The vehicle models are projected onto the ground plane assuming parallel in-
coming light which is set manually. In this way, edge segments of the shadow can be
included in the vehicle model for a better match. According to [Prati et al., 2003] a
model based approach for shadow suppression yields better results than a non-model
based. However, the model based is often too complex and time consuming compared
to the non-model based [Prati et al., 2003].

A.3 Tracking Methods

The overview of tracking approaches given in Section 6.1.3 on page 67 only contains the main
points related to tracking method. The following describes the methods in greater detail.
A bottom-up approach is followed in describing the issues related to tracking based on the
survey in [Yilmaz et al., 2006]. The �rst issue is selecting a suitable representation of the
object. The next issue is to select the image features used to track the object. At the top
level, general tracking approaches are reviewed.

A.3.1 Object Representation

The object representation is the lowest level in tracking and can be divided into shape and
appearance of objects. A strong relationship exists between the object representation and
the general tracking approach. The shape representations are described �rst, followed by a
description of the appearance representations.

Points The object is represented by a single point or multiple points. This representation
is suitable for tracking objects that occupy a small region in the image. Examples are
shown in Figure A.1(a) and A.1(b).

Primitive geometric shapes The shape of the object is represented using e.g. a rectangle
or an ellipse. Using this representation the motion of the object is modelled by transla-
tion, a�ne or projective transformation. Primitive geometric shapes have been applied
in representing both rigid and non-rigid objects. Examples are shown in Figure A.1(c)
and A.1(d).



A.3 Tracking Methods 131

Articulated shape models The human body consists of body parts held together with
joints. To represent an articulated object, the body parts can be modelled using cylin-
ders or ellipses as shown in Figure A.1(e), and the relationship between the body parts
is governed by a kinematic model. This representation is not well suited for representing
vehicles.

Skeletal models The object skeleton is often used to recognize objects, but is also capable of
modelling both articulated objects and rigid objects. An example of the object skeleton
extracted using the medial axis transform is shown in Figure A.1(f).

Object silhouette and contour The object boundary is de�ned using a contour represen-
tation, and two examples are shown in Figure A.1(g) and A.1(h). The area within this
boundary is the object silhouette, and is shown in Figure A.1(i). Both the silhouette
and contour representations are well suited for modelling complex non-rigid objects.

As with the shape of the objects a number of approaches exist to represent the appearance
of the objects. Some representations combine both the shape and appearance of the objects.
Common appearance representations are listed next.

Probability densities of object appearance Appearance features could be color or tex-
ture, and the probability densities can be derived from the image region given by the
interior of the shape model, e.g. interior of a bounding box or a contour. The esti-
mate of the probability density can be either parametric (e.g. Gaussian or mixture of
Gaussians) or non-parametric (e.g. Parzen windows or histograms).

Templates The appearance template is formed using a simple geometric shape or the sil-
houette. Both the spatial and appearance information are encoded in the template.
However, the object appearance is generated using only a single 2D view of the object.
This may restrict the appearance template to only be used for objects whose poses do
not vary considerably during movement.

Active appearance models In this representation both the shape and appearance are mod-
elled simultaneously. In general, the object shape is de�ned by a number of landmarks,
where each landmark contains an appearance vector representing color, texture or gra-
dient magnitude. However, active appearance models need a training phase and are
highly sensitive to the initialization of tracking, making it di�cult to start tracking
automatically [Hu et al., 2004b].

Multi-view appearance models As opposed to templates, these models are generated us-
ing di�erent views of an object, e.g. views with di�erent object poses or di�erent
illumination. To reduce the dimensionality of the di�erent object views, a subspace is
generated using e.g. Principal Component Analysis or Independent Component Analy-
sis. This approach requires a training phase like the active appearance models.

A.3.2 Feature Selection

Selecting the features to use in the tracking of objects is closely related to the object represen-
tation; e.g. color features are used in probability densities of object appearance, and object
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(a) (b) (c) (d)

Figure A.2: General tracking approaches. (a) Point tracking with multiple point asso-
ciation. (b) Kernel tracking using a rectangular representation. (c) Silhouette tracking
illustrated by a contour representation. (d) Body model tracking using rectangular
body parts.

edges are used as features for contour-based representations. It is desired to use features that
make objects easy to distinguish in the feature space. Often features are combined to track
the objects. Some common visual features are listed in the following.

Color Color is often a simple feature to distinguish objects, e.g. a red car versus a white
car. The apparent object color depends mainly on the spectral power distribution of
the illuminant and the object's surface re�ectance properties. The apparent color is
sensitive to illumination changes. However, some color spaces are able to reduce the
sensitivity towards illumination changes.

Edges Boundary tracking algorithms often use edge features. The object boundary generally
causes strong changes in image intensities. Edge detection methods (and especially the
Canny Edge Detector) are often used to extract the edge features. Compared to color
features, edge features are more insensitive to illumination changes.

Optical �ow Optical �ow is often used as a motion segmentation method, but can also be
applied in object tracking. In some cases the optical �ow-based motion segmentation is
combined with the tracking. Optical �ow is a dense �eld of displacement vectors which
de�nes the translation of each pixel in a region.

Texture Texture features are based on the intensity variation of the object surface. It can be
seen as a measure of surface smoothness and regularity. To extract the texture features,
a descriptor such as the Gray-Level Coocurrence Matrix is required. Texture features
are less sensitive than color features towards illumination changes.

A.3.3 General Tracking Approach

In the following, four main tracking categories are identi�ed. They are highly dependent
on the chosen object representation and feature selection, and thus the applicability of the
tracking method depends on the type of objects to be tracked. The four general approaches
to tracking are shown in Figure A.2 and are described in the following. For each general
tracking approach some examples of work using the approach are given.

Point tracking The detected objects are represented using a single or multiple points. The
association between points in consecutive frames is based on the previous object state.
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(a) (b)

(c) (d)

Figure A.3: Tracking results. (a) Tracking black dots on rotating
dish [Veenman et al., 2001]. (b) Tracking a group of interacting people
[McKenna et al., 2000]. (c) Tracking a vehicle on highway using the con-
tour [Mansouri, 2002]. (d) Tracking a vehicle using a 3D wire-frame model
[Koller et al., 1993].

The object state could include the position and motion of the object. Point track-
ing becomes complicated during occlusion of the tracked points, misdetection, entries
and exits of objects. To overcome these issues two approaches for point association
can be identi�ed. The �rst is deterministic methods for point association where global
motion constraints are applied. The second uses statistical methods for correspon-
dence, where speci�c tools could be Kalman �lters, particle �lters and multiple hy-
pothesis tracking. An example of association of multiple points is shown in Figure
A.2(a). [Veenman et al., 2001] is a point tracking method, and a tracking result using
this method is shown in Figure A.3(a).

Kernel tracking In this context, kernel refers to the object shape and appearance; e.g. a
rectangular shape and a color histogram describing the appearance within the rectangle.
Parametric motion or dense �ow �eld are often used to model the object motion. The al-
gorithms based on kernels di�er mainly on the applied appearance representation. The
most occurring appearance representations are in this context templates, probability
densities and multi-view appearance models. Templates and probability density-based
representations are popular due to their simplicity and computational e�ciency. How-
ever, the appearance models are based only on the recent single view observations of
the object. The appearance of the object may change dramatically during tracking, and
this is build into the multi-view appearance representation. The multi-view appearance
representations must be learned o�ine. Kernel tracking is illustrated in Figure A.2(b).
[McKenna et al., 2000] is a kernel tracking method for humans, and a tracking result
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using this method is shown in Figure A.3(b).

Silhouette tracking Silhouette tracking methods utilizes the information contained within
the object boundary. Appearance density and shape models are usually used for rep-
resenting this information. Often edge maps are applied as the feature. Depending on
the chosen object model, either shape matching or contour evolution is used for track-
ing the object. Trackers based on silhouettes provide an accurate shape description
of the object. This description can be utilized at levels at a higher abstraction level
to e.g. understand the object behavior. Objects with complex shapes such as hands,
head and shoulders are typical examples of objects where silhouette tracking is applied.
As mentioned earlier, these methods often need a training phase and are highly sensi-
tive to initialization. An example showing contour evolution is given in Figure A.2(c).
[Mansouri, 2002] is a silhouette tracking method that only requires little a priori knowl-
edge about the object being tracked. A tracking result for vehicles using this method is
shown in Figure A.3(c).

Body model tracking In body model tracking the �body� of the object is modelled. The
object is tracked by projecting the model into the image plane and compared with the
image data. This is referred to as a predict-match-update scheme. The models are
constructed o�ine and incorporate prior knowledge of the object body. According to
[Hu et al., 2004b], a signi�cant di�erence exists between human body tracking (non-
rigid object tracking) and vehicle tracking (rigid object tracking). In the vehicle case,
a 3D wire-frame vehicle model is often used. When modelling the human body the
geometric structure can be represented using e.g. stick �gure, 2D contour, volumetric
model or hierarchical model. The main challenges are to construct the body model,
�nd a representation of prior knowledge of motion models and motion constraints and
�nally to select a prediction and search strategy. The model based tracking algorithms
obtain good results during occlusion (including self-occlusion for human objects). An
example of a human body model using rectangular patches for body parts is illustrated
in Figure A.2(d). [Koller et al., 1993] is a body model tracking method where vehicles
are tracked using 3D wire-frame as shown in Figure A.3(d).



Appendix B
Shadow Suppression

The following documents the design and test of a shadow suppression
method based on multi-view geometry.

B.1 Multi-View Geometry Approach

In Section 5.8.1 on page 51 it was decided to implement and test a multi-view geometry
approach based on [Keck et al., 2006] since the method is new and relatively untested. The
method is interesting because it exploits the bene�t of having multiple views. The work in
[Keck et al., 2006] presents a method that exploits the bene�t of having multiple views and
is based on work presented in [Jeong and Jaynes, 2005].

B.1.1 Conceptual Design

Like many other shadow suppression algorithms this method relies on comparing the color of a
pixel. But rather than comparing pixels to a background model or image, it compares pixels
between two views. The method does not speci�cally detect shadow, but separates object
pixels from non-object pixels. The method relies on the following assumptions to remove
shadow from the existing foreground mask:

• The color di�erence of pixels warped between the two views is close to zero when neither
of the two pixels are covered by a foreground object.

• Objects move on a planer surface.

• The �eld of view of the cameras overlap.

The di�erence between a pixel and its mating pixel in the other view is calculated by a
color similarity measure. Pixels of a shadow and background pixels are assumed to have low
di�erence while objects have a high di�erence due to the parallax of the views. An example
of three mapped points is shown in Figure B.1. By comparing pixels within the foreground
mask generated by the Codebook method, it is possible to separate shadow and object pixels
based on the calculated similarity measure. The mapping between views is handled by planar
homography mapping, as explained in Section 4.2 on page 31.

135



136 Chapter B. Shadow Suppression

Low color 
difference

High color 
difference

Figure B.1: Three points warped using the homography. The multi-view shadow
suppresion assumes that there is a low color di�erence between points that are on the
ground plane (the red and green points) and a high di�erence for pixels mapping to an
o�-plane object (the yellow point).

B.1.2 Illumination Balancing

In order to make the method more invariant to illumination di�erences between views due
to e.g. auto gain of the cameras, the illumination is balanced using the ratio between the
average illuminations of the overlapping �eld of views in the two images. The e�ect of the
illumination balancing can be seen in Figure B.2, and the overlapping �eld of view between
the cameras is depicted in Figure B.3.
It should be noted that the use of �eld of view for illumination balancing is not always valid
due to the perspective of the cameras, e.g. in Figure B.2 the shadow of the trees are much
bigger in the right view than the left due to the perspective. This results in slight over
compensation, which can be seen in the upper right corner of the adjusted image in Figure
B.2. A better solution could be to select a region on the ground plane which has a similar
size in the two views. However, the current illumination balancing improves the results, so
no further e�ort is made to improve it.

B.1.3 Similarity Measure

The similarity measure used by [Keck et al., 2006], compares the RGB color components by
the L2 Norm:

Color di�erence =
√

(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2 (B.1)

Where R1, G1 and B1 are the color components of a pixel in the �rst view. R2, G2 and B2

are the color components of the matching pixel in the second view.
Only pixels classi�ed as foreground by the Codebook method are tested for similarity. After
computing the similarity measure a threshold is applied to determine if the pixel is in shadow
or not; values below the threshold is classi�ed as shadow. In the current work, the threshold
is set to 90 (The theoretical maximal di�erence is 441). This is a deterministic method, and
an attempt to improve the method by unimodal modelling of the di�erence was applied, but
this did not yield an improvement.
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(a) Original camera input

(b) Balanced illumination

Figure B.2: Example of illumination balancing. First row: original input images.
Second row: the illumination in the right image has been adjusted to match the illumi-
nation level of the left image.

Figure B.3: The bright area shows the overlapping �eld of view between the cameras.

B.1.4 Results and Discussion

In the following, a discussion of the results obtained from experimental testing of the multi-
view geometry method is presented. The observations is based on more than 90 minutes of
recordings.
An example of the shadow segmentation by the method is given in Figure B.4. In the left
view too much shadow are removed. This is due to two issues; �rst, he (right person) is
wearing a grayish shirt and grayish backpack which is compared to the gray road in the other
view; secondly, her dark hair (left person) is overlapping with the shadow in the other view
because she is occluding his shadow. Both issues causes foreground objects to be wrongly
removed as shadow. In the right view, the shadow segmentation performs well. Almost the
complete shadow is removed without remove parts of the foreground objects. In many cases
the method does not only remove shadow but also noise in general. Furthermore, since the
method is not based on temporal information like the Codebook method, it reacts instantly
to sudden noise e.g. caused by lighting changes.
In general, the method is good for removing strong shadow, since it relies more on parallax
rather than color comparison. However, from the output videos of the experimental tests it is
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Figure B.4: Result of the shadow segmentation. Foreground is marked as yellow and
foreground removed by the shadow suppression is marked as red.

evident that the number of removed actual shadow pixels compared to the number of removed
foreground object pixels is too low.
The work in both [Keck et al., 2006] and [Jeong and Jaynes, 2005] uses datasets with con-
siderably better camera angels and planar surfaces for homography mapping. From their
published data, both papers also appear to have more uniform colored ground plane surfaces
than are available in the datasets of this work. This together with the results presented above
indicates that the method does not perform well enough to be used.

B.1.5 Summary

The following lists positive and negative sides of using the multi-view geometry method for
shadow suppression.
Pros:

• Removes strong shadow.
• Functions as multi-view object detection in addition to shadow suppression.
• Removes noise pixels on the edge of objects.
• Does not rely on temporal information and improves segmentation of scenes with rapid

changes.

Cons:

• Requires a very precise mapping between views. This problem is enhanced by perspec-
tive distortion; the di�erence between the sizes of the shadow in the two views is a
problem.
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• It does not work if the shadow is occluded in one view.
• There is a signi�cant chance of false positive (a part of the foreground object is removed),

since warped object points are compared to what the other view contains e.g. other
foreground objects or noisy background.

• The parallax assumption does not hold for cars. Due to their size, a point on the car
might be warped to another point on the same car.





Appendix C
General Methods

This appendix describes the Kalman �lter and least median of squares. The
Kalman �lter is used for tracking in single view, and the least median of
squares is used for �tting the principal axis of humans.

C.1 Kalman Filter

The Kalman �lter is a recursive �lter that estimates the state of a dynamic system. The
estimation is optimal in the sense that it minimizes the estimated error covariance given
some conditions, which are listed in the following. This section gives a brief introduction
to the discrete Kalman �lter. The section is based on [Welch and Bishop, 2001], and the
mathematical notation is also based on the same source. For a more detailed description of
the Kalman �lter refer to [Welch and Bishop, 2001].
The purpose of the Kalman �lter is to estimate the state x of a given discrete-time process.
The process is assumed to be governed by the linear stochastic di�erence equation:

xk = Axk−1 + wk−1 (C.1)

A represents the model of the process and is referred to as the state transition matrix. The
process model is also referred to as the motion model. The noise associated with the process
model is expressed by w. Furthermore, there is a measurement model that describes the
relationship between the process state and the measurements. The measurement model is
given by:

zk = Hxk + vk (C.2)

The observed measurement is expressed by zk. H is referred to as the measurement matrix
and relates the state xk with the measurement zk. The noise associated with the measurement
model is expressed by v.
Both the model noise wk and the measurement noise vk are assumed to be white, Gaussian
distributed and independent of each other. This is expressed by:

p (w) ∼ N (0, Q) (C.3)
p (v) ∼ N (0, R) (C.4)
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Q is referred to as the process noise covariance and R as the measurement noise covariance.
Both are in the following assumed to be constant over time. This assumption is also used in
the developed system.

C.1.1 Computing the Kalman Filter

Before giving the equations for the Kalman �lter, some de�nitions are introduced. In the
following, x̂−k is de�ned as the a priori state estimate at time step k given knowledge of the
process prior to time step k. x̂k is de�ned as the a posteriori state estimate at time step k

given measurement zk. The a priori and a posteriori estimate errors are de�ned respectively
as:

e−k = xk − x̂−k and (C.5)
ek = xk − x̂k (C.6)

The a priori estimate error covariance and the a posteriori estimate error covariance then
follows respectively as:

P−
k = E

[
e−k e−T

k

]
and (C.7)

Pk = E
[
eke

T
k

]
(C.8)

The Kalman �lter computes the a posteriori state estimate x̂k using this equation:

x̂k = x̂−k + K
(
zk −Hx̂−k

)
(C.9)

x̂k is computed as a linear combination of the a priori estimate x̂−k and a weighted di�erence
between an actual measurement zk and a measurement prediction Hx̂−k . This di�erence is
also referred to as the residual. A residual of zero means that the predicted measurement and
the actual measurement are in agreement. K in Equation C.9 is referred to as the gain and
is given by:

K = P−
k HT

(
HP−

k HT + R
)−1 (C.10)

K performs the weighting and can be understood as what is �trusted� more. If the measure-
ment noise covariance R approaches zero, the measurement zk is trusted more and more, while
the predicted measurement Hx̂− is trusted less and less. However, as the a priori estimate
error covariance P−

k approaches zero the actual measurement zk is trusted less and less, while
the predicted measurement Hx̂− is trusted more and more.

C.1.2 The Kalman Filter Algorithm

The Kalman �lter works by a predict-correct scheme. In the prediction step, the state is
predicted ahead of time. The predicted state is (somehow) matched with actual noisy mea-
surements. The matched measurement is used in the correction step to correct the �lter. The
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matching of the predicted state with the measurements is not considered here. The cycle is
illustrated in Figure C.1.

Predict Correct

Figure C.1: The predict-correct scheme used by the Kalman �lter.

In the prediction step, the following is computed:

x̂−k = Ax̂k−1 (C.11)
P−

k = APk−1A
T + Q (C.12)

The purpose is to project the state and covariance estimates forward from time step k− 1 to
time step k.
In the correction step, the following is computed:

Kk = P−
k HT

(
HP−

k HT + R
)−1 (C.13)

x̂k = x̂−k + Kk

(
zk −Hx̂−k

)
(C.14)

Pk = (I −KkH) P−
k (C.15)

Equation C.13 and C.14 are Equation C.9 and C.10 applied at time step k, respectively.
The a posteriori estimate error covariance Pk is also calculated. x̂k and Pk are then used in
the prediction step in the next time step. This is the recursive nature of the �lter, which
is advantageous with relations to the computational complexity. The complete algorithm is
shown in Figure C.2.
The noise for both the process model and the measurement model must be speci�ed. The
measurement noise covariance R can usually be measured. On the other hand, the process
noise covariance Q needs to be estimated, which generally is more di�cult as the estimation
from the model can not be observed directly. Furthermore, the state transition matrix A and
measurement matrix H must be speci�ed along with an initial estimate of the a posteriori
state x̂0 and a posteriori estimate error covariance P0.
In this work, the process noise covariance and measurement noise covariance are set through a
trial and error process. A �rst-order motion model is used, which dictates the state transition
matrix and measurement matrix. All Kalman �lters are in this work initialized using the
measurement (centroid, ground point or bounding box measurement) and with zero velocity.
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(1) Project the state ahead

(2) Project the error covariance ahead
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(1) Compute the Kalman gain

(2) Update estimate with measurement zk

(3) Update the error covariance
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Figure C.2: A complete picture of the Kalman �lter algorithm.

C.2 Least Median of Squares

The following explains the Least Median of Squares (LMedS) algorithm used for �tting a
vertical line for humans. The vertical line is determined from the vertical projection histogram
of the foreground mask.
Methods used for �tting a line can be evaluated by their breakdown point, which is de�ned as
the smallest percentage of outliers that can cause the �tted line to explode [Barreto, 2001].
This is what separates the LMedS from the Least Mean of Squares (LMS), since LMS has a
breakdown point of 0 percent compared to 50 percent for the LMedS
[Rousseeuw and Leroy, 1987]. Unlike LMS, LMedS has no close form solution or formula,
since the median is an order or rank statistic [Barreto, 2001]. This makes computation of the
�tted line complex and a brute force solution is computationally expensive, see Section 7.3
on page 85. LMedS could be implemented using a sorting algorithm, however, since all values
are integers, a better and less computationally expensive solution can be found using the
histogram [Yang and Levine, 1992].
Let n be the total number of pixels in the histogram and the range be a number of bins in
the histogram. From [Rousseeuw and Leroy, 1987], it can be shown that solving the LMedS
minimization problem is equivalent to �nding a sequence of length bn/2c+1 with the minimum
range R, where b·c denote a �oor operation [Yang and Levine, 1992]. More speci�cally, if
h = bn/2c and the sequence with the shortest range is described as {xk · · · xh+k} where k is
pixels in the histogram, then the solution to the minimization problem is given by:

L =
xh+k + xk

2
(C.16)

The minimum range is then given by:

R = xh+k − xk (C.17)
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An example of a histogram is shown in Figure C.3, where L determines the position of the
vertical line �tted by LMedS.

xk xh+kL

R

x

hist[x]

Figure C.3: LMedS solution for a histogram. L is the solution. xk and xh+k de�nes
the shortest range R.

The algorithm used for calculating the LMedS is presented in Listing C.1. The algorithm
is derived from pseudo code presented in [Yang and Levine, 1992], but since this code did
not seem to provide the correct result, some modi�cations were made. The listed algorithm
outputs two histogram pointers g1 and g2 (xk and xh+k) that minimizes the shortest range R,
hence R = g1− g2. If there is more than one occurrence of the minimum range R the average
solution is used.

Listing C.1: Least Median of Squares Algorithm
1 Step 1: Divide the histogram in two
2 hist = vertical projection of the foreground mask
3 n = the total sum of pixels in the hist

4 m = the bin that contains n/2
5 NH = the number of pixels above n/2 in m

6 NL = the number of pixels below n/2 in m

7

8 Step 2: Initialize pointers
9 Two pointers p1 and p2 are initialized as follows:
10 p1 points to the �rst bin in hist i.e p1 = 0
11 p2 = m + 1 and R = p2 − p1

12

13 Step 3: Increment p1 until NH is zero
14 g1 = p1 and g2 = m

15 while NH > 0
16 if m− p1 < R then R = m− p1, g1 = p1 and g2 = m

17 if hist[p1] < NH then NH = NH − hist[p1] and hist[p1] = 0
18 else hist[p1] = hist[p1]−NH and NH = 0
19 if hist[p1] = 0 then p1 = the �rst non−empty bin in hist

20 end
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21

22 Step 4: Increment p2

23 p2 = j where j is the smallest number larger than p2 and hist[j] > 0
24 hist[m] = NL

25

26 Step 5: Alternately increment p1 or p2 while ensuring that R is minimal.
27 while p2 < length(hist)
28 if p1 − p2 < R then R = p2 − p1, g1 = p1 and g2 = p2

29 if hist[p2] > hist[p1] then hist[p2] = hist[p2]− hist[p1] and hist[p1] = 0
30 else hist[p1] = hist[p1]− hist[p2] and hist[p2] = 0
31 if hist[p1] = 0 then p1 = the �rst non−empty bin in hist
32 if hist[p2] = 0 then p2 = j where j is the smallest number larger than p2 \textbf{and}

hist[j] > 0
33 end



Appendix D
Datasets

This appendix describes the datasets used to develop and test the system.
The data recorded in this work is referred to as the Matthews Lane dataset
and is explained �rst. This is followed by a description of the HERMES
dataset. Finally, the PETS 2001 dataset is described.

D.1 Matthews Lane Dataset

The Matthews Lane dataset is a collection of sequences recorded in this work. Matthews Lane
is the name of a road located in the campus area of University of California, San Diego. The
dataset is recorded using two PTZ cameras mounted on lamp posts at 6.5 meters height. The
PTZ cameras have two settings. All sequences are recorded using either a narrow view or a
wide view camera con�guration of the scene. An aerial view of the scene is shown in Figure
D.1(a), and the two camera's locations are indicated by a red dot. Figure D.1(b) shows a
street level view of the scene where both cameras are visible. A snapshot from the narrow view
camera con�guration is shown in Figure D.2. The narrow view camera con�guration covers
a ground plane area of 10× 20 meters. A snapshot from the wide view camera con�guration
is shown in Figure D.3. The wide view camera con�guration covers a ground plane area of
13× 32 meters.
A total of 11 sequences are contained in this dataset, and they are listed in Table D.1.
The table lists the date and time of the sequence. Furthermore, it lists if the narrow view
or wide view camera con�guration is used and if the camera's auto setting is enabled or
disabled. Initially, it was believed that the auto setting could cause too drastic changes in
the illumination, but test proved that it is not the case. Adjusting the cameras manually
also proved di�cult, and with natural changes in the illumination it is only possible to record
sequences of a few hours length. Table D.1 also lists the number of hours in the sequence and
the number of frames for each view. The 11 sequences have a total length of 151 hours and
40 minutes. A red star indicates that a part of the sequence is used as a test sequence in the
overall system test. Six test sequences are used in the overall system test, which is reported
in Chapter 8 on page 101.
The 11 sequences in Table D.1 are �real� surveillance recordings, meaning that no constraints
have been put on the objects moving in the scene. However, �ve sequences not listed in
the table are recorded with choreographed data. Four of the sequences are for testing the
accuracy of the correspondence module, which is documented in Section 7.5 on page 95. The
last sequence is used during development of shadow suppression methods, and examples of
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Camera 2 Camera 1

(a) Aerial view

Camera 2

Camera 1

(b) Street view

Figure D.1: Matthews Lane: Aerial view and street level view of the scene. The two
PTZ cameras are highlighted in the views.

(a) Camera 1 (b) Camera 2

Figure D.2: Matthews Lane: The narrow view camera con�guration.

(a) Camera 1 (b) Camera 2

Figure D.3: Matthews Lane: The wide view camera con�guration.
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Date Time Weekday Camera conf. Auto Hours Frames
14-04-2007 10:00 - 14:00 Sat Wide No 4:10 112,065
15-04-2007 10:00 - 12:00 Sun Wide No 2:10 110,573
16-04-2007? 13:30-15:30 Mon Wide No 2:10 122,989
27-04-2007 09:30-14:00 Fri Narrow No 4:40 264,732
29-04-2007 06:30-19:00 Sun Narrow Yes 12:40 628,219
02-05-2007 14:50-17:50 Wed Narrow Yes 3:10 164,648
03-05-2007? 06:00-20:00 Thu Narrow Yes 14:10 652,011
04-05-2007?? 06:00-13:30 Fri Narrow Yes 7:40 396,688
05-05-2007 08:00-20:00 Sat Narrow Yes 12:10 362,163
06-05-2007 10:00-20:00 Sun Wide Yes 10:10 627,671
12-05-2007 - 14:40 - Sat, sun, Wide Yes 78:30 4,308,191
15-05-2007?? 21:00 mon, tue

Table D.1: The sequences in the Matthews Lane dataset ordered by date. A red star
indicates that a test sequences has been extracted from that sequence to be used in the
overall system test. See text for explanation.

the shadow suppression results are given in Section 5.8.5 on page 54.
The camera type used is Pelco Spectra III Series Dome System, and the two cameras are
shown in Figure D.4. The cameras are connected to an AXIS 241SA Video Server, and the
videos are captured over Ethernet using this video server. Due to this setup and the developed
capture software, the achieved frame rate is 15 fps. The resolution is 352 × 240. The videos
have been recorded using a lossy DivX6.5 format at highest quality setting and 780 kbps
bitrate.

Figure D.4: Matthews Lane: Closeup of the two Pelco PTZ cameras. On top of each
Pelco PTZ camera there is mounted an omnidirectional camera, which is not used in
this work.
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(a) Camera 1 (b) Camera 3

(c) Camera 4 (d) Camera 5

Figure D.5: HERMES: Snapshot. The four views are synchronized. Camera 2 is a
moving PTZ camera and out of the scope of this work.

D.2 HERMES Dataset

The HERMES dataset is a choreographed outdoor dataset recorded in Barcelona, Spain. The
dataset is part of the project named Human Expressive Representations of Motion and their
Evaluation in Sequences [HERMES, 2007]. HERMES is an EU-project which concentrates on
how to extract descriptions of people behavior from videos in a restricted discourse domain,
such as pedestrians crossing inner-city roads, approaching or waiting at stops of buses and
humans in indoor worlds like an airport hall, a train station or a lobby. The HERMES dataset
used in this thesis is a single sequence of one minute and 37 seconds. Five synchronized
cameras are used to record the sequence, but one of the cameras is a moving PTZ camera
and is out of the scope of this work. A snapshot of the four stationary views of the scene is
shown in Figure D.5. The dataset is used to evaluate the system, but only camera 1 and 5
are used (see Section 9.2 on page 118).
As mentioned, the sequence is choreographed and several events happen. The most interesting
event with regards to this thesis is the near collision of a group of people and a vehicle.
Furthermore, a thief steals a bag and the thief is then chased by one of the persons.



D.3 PETS 2001 Dataset 151

Each view has a resolution of 1392× 1040, but for testing and evaluating the system the view
is resized to 696× 520. The frame rate is 15 fps.

D.3 PETS 2001 Dataset

PETS is an abbreviation for Performance Evaluation of Tracking and Surveillance
[Computational Vision Group, 2007]. The purpose of PETS is to automate the performance
evaluation process by providing several datasets, metrics and results. PETS workshops have
been held annually since 2000. The dataset from 2001 is for outdoor tracking of people and
vehicles using two synchronized views recorded at Reading University, England. The PETS
2001 dataset contains �ve sequences where some include use of an omnidirectional camera
and a moving camera. For this work, only a single sequence is extensively applied during
development of the system, and a snapshot from this sequence is shown in Figure D.6.

Figure D.6: PETS 2001: Snapshot from the test sequence used during development.
The two synchronized views are illustrated.

Each view is recorded with a resolution of 768 × 576 and with a frame rate of 25 fps. The
length of the used sequence is 1 minute and 47 seconds.





Appendix E
List of Parameters

This appendix lists the parameters mentioned in the thesis. Parameters are
listed for the foreground segmentation module, single view tracking module
and the correspondence module.

E.1 Foreground Segmentation

In the following, the parameters for the Codebook method are listed. This is followed by the
parameters used for the color segmentation shadow suppression based on [Cucchiara et al., 2001].

Codebook Parameters

ε1 : Threshold that determines the radius of the codeword during training. It is
the maximum allowed chromaticity di�erence.

ε2 : Threshold that determines the radius of the codeword during online classi�-
cation. It is the maximum allowed chromaticity di�erence.

α : Used along with β to determine the height of the codeword based on Ǐ and
Î.

β : Used along with α to determine the height of the codeword based on Ǐ and
Î.

Ntrain : The number of frames used to train the background model.

Tλ : The threshold for Maximum Negative Run-Length (λ) during temporal �l-
tering. Codewords with λ values above this threshold are removed from the
codebook.

γ : The learning rate used by the adaptive �lter to update the activated code-
words.

Nstable : The number of consecutive frames a pixel must be classi�ed as background in
order to be considered stable background. Only stable background is updated
during online classi�cation.

Ntrain, online : The number of frames that a codeword must undergo online training before
it can be changed to a non-permanent codeword.

Tλ, online : The online MNRL threshold. The λ of the online training codeword must be
below this threshold before it can be changed to a non-permanent codeword.
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Nexpiration : The maximum allowed number of frames between activation of a non-
permanent codeword. If more frames occur without activation, the codeword
is removed from the codebook.

nmedian : The size of the median �lter used in post-processing.

Color Segmentation Shadow Suppression Parameters

αV : Lower limit for drop in intensity allowed for a potential shadow.
βV : Upper limit for drop in intensity allowed for a potential shadow.

τS : Threshold for the saturation component. The saturation component for
shadow should either remain constant or be lowered.

τH : Threshold for change in the hue component. A potential shadow should not
cause a change in the hue component.

E.2 Single View Tracking

In the following, the parameters for object classi�cation, the tracks, probabilistic appearance
model and track smoothness are listed.

Object Classi�cation Parameters

Tnoise : Threshold for the the size of detected objects. Detected objects smaller than
this threshold are removed as noise.

Tspread : Threshold used for the spread metric. Detected objects with a spread lower
than this threshold are classi�ed as vehicles. Detected objects with a spread
above this threshold are classi�ed as humans.

Nrecent : The number of latest object classi�cation the recent history histogram is
based on. It is typically set to a value corresponding to above one second of
frames.

Track Parameters

Tdead : The number of frames a track is allowed to not be updated before the track
is destroyed.

Tstable : The number of frames a track must be updated before it is considered stable.

Tsentry : The number of pixels used for the sentry border. A detected object must be
within this border in order to be created as a track.

TentrySize : If a vehicle object is above this threshold in size it is created as a track
regardless of the sentry border.



E.3 Correspondence of Objects 155

Probabilistic Appearance Model Parameters

α : The learning rate for blending new color measurements in the color model.

λ : The learning rate for blending new foreground pixel measurements in the
probability mask.

Nfit : Size of the neighborhood used to perform track re�nement.

TnumPixels : The number of assigned pixels needed to update the track when segmenting
inter-object occlusions.

Tdepth : The number of disputed pixels needed in order to perform depth estimation
between two tracks.

Track Smoothness Parameters
Tcorner : The allowed displacement of a track's bounding box corner. If a corner is

displaced more than this threshold the track motion is deemed as not smooth,
which could indicate that the track is being �stolen�.

TbboxArea : The maximum allowed increase in the track's area for smooth track motion.

TbboxBox : The maximum allowed increase in the track's bounding box area for smooth
track motion.

E.3 Correspondence of Objects

In the following, the parameters used for �nding correspondence of humans and vehicles are
listed.

Correspondence of Humans Parameters

DT : Initial constraint on the correspondence distance for valid pairs. The distance
must be lower than this threshold for a valid pair.

DT1 : Threshold used in the modi�ed correspondence algorithm for pairing groups.
The distance in the view with an unpaired track must be below this threshold.

DT2 : Threshold used in the modi�ed correspondence algorithm for pairing groups.
The distance from the warped ground point location to the intersection point
in the view with an already paired track must be below this threshold.

Correspondence of Vehicles Parameters

Thistory : The needed number of frames where two tracks must have been paired con-
secutively before they have a historic stable correspondence relationship.





Appendix F
Description of Developed Software

This appendix gives a description of the developed software. First the im-
plementation is described. This is followed by an explanation of the con�g-
uration �les, which is used in the developed software. Then the homography
estimation tool is described. Finally, the tracking system is described.

F.1 Implementation

All code are implemented in C++ using the development environment Microsoft Visual Studio
2005. The code make use of the open source computer vision library OpenCV developed by
Intel. OpenCV contains many basic image analysis and computer vision algorithms. The
installation of OpenCV version 1.0 is located on the DVD (} /installation/opencv/ ).
The implementation is made in an object oriented in accordance with the modules described
in the thesis. The names of the modules correspond with the theory described in the thesis.
The test videos in the Matthews Lane dataset are recorded using the DivX codec version 6.5
and are divided into 10 minutes long video �les. To speed up processing, the foreground seg-
mentation videos are also available, and these videos are stored using the Alparysoft Lossless
Video Codec version 2.0. This codec is applied because it does not add extra frames to the
compressed video �le. The output videos are compressed by the Xvid codec version 1.1.2.
This codec is used because it gave the best visual result. Installation �les for the codecs can
be found on the DVD (} /installation/codecs/ ).
MSXML 6.0 must also be installed in order to use the XML con�guration �les described next.
Installation �le for this program can be found on the DVD (} /installation/msxml6.0/ ).

F.2 Con�guration File

A con�guration �le is an XML-�le and is needed in order to run any of the developed programs.
The con�guration �le lists the input video to the program, and it is possible to indicate which
frames in the input the program should process. It also determines if any output is to be
stored and in case of video output, which codec should be used. Modules like the shadow
suppression and single view tracking can be enabled or disabled. Visualization options are also
controlled by the con�guration �le. View invariant analysis and event recognition as described
in Chapter 9 on page 117 are in the terminology of the con�guration �le referred to as the
system being in alarm mode. The alarm mode can be disabled or enabled. Furthermore, the
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parameters used in the modules are also listed in the con�guration �le. The con�guration
�le has a prede�ned structure of elements, and a detailed description of each element can be
found on the DVD (} /application/con�g_decription.doc).
When calling the executable �le for the homography estimation tool or the tracking sys-
tem program, a con�guration �le must be speci�ed as option. Without this option or with
additional options, an error is reported by the program.

F.3 Use of the Homography Estimation Tool

The homography estimation tool makes it possible to both estimate the planar homography
for a two view camera setup and test the estimated homography. The tool is controlled using
a control panel, which is shown in Figure F.1(a). Given that the homography is loaded, the
virtual view and the shared region can be shown by clicking on the top two buttons. The
control panel also makes it possible to go forward or backward in the video. The program
closes by pressing the Esc-key.
Given that the homography is estimated, it can be tested either by warping a point or a line
between views. A point is warped by pressing the Alt-key and left clicking in one of the views.
The warped point is shown as a blue dot in the other view. A line can be warped by right
clicking twice in one of the views. The warped line is shown in the other view as a green
line. An example of warping a person's principal axis is shown in Figure F.1(b) and F.1(c).
Along with the virtual view and the shared region these techniques are used to visually test
the accuracy of the estimated homography.
The homography can be estimated or re-estimated, which requires four control points in each
view. By pressing the Ctrl-key and left clicking in one of the views a control point is stored.
When the four control points are located in both views, the new homography is calculated
and stored with names provided by the con�guration �le. If the homography is already
estimated, the program explicitly asks the user if a new homography should be re-estimated
before overwriting the existing homography.
The source code for the homography estimation tool is located on the DVD (} /applica-

(a) Control panel (b) View 1 (c) View 2

Figure F.1: The three windows used by the homography estimation tool.
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tion/homographyEstimationTool/ ). An executable version is also located on the DVD (}
/application/homographyEstimationTool/release/ ). In the same library some shortcuts are
also stored. Each shortcut calls the executable �le for the homography estimation tool with
a di�erent con�guration �le. A walkthrough for running the program can be found on the
DVD (} /application/walkthrough.doc).

F.4 Use of the Tracking System

The tracking system performs tracking of humans and vehicles. When calling the executable
�le a con�guration �le must be listed as an option. Besides the con�guration �le the tracking
system might need the following �les:

Homography �les A homography �le for each view is always needed. Each homography
maps from an image view to the virtual view.

Virtual view image It is possible to enable or disable visualization of the virtual view.
Given that it is enabled in the con�guration �le, a virtual view image must also be
speci�ed on which the detected objects are drawn. If the virtual view image is a virtual
top-down view as in Figure 4.3 on page 33 and 4.4(c) on page 34 it can be used to verify
the tracking result.

Alarm mode virtual view image If the system is in alarm mode, an alarm mode virtual
view image must be available to draw the tracking result.

Alarm mode road map If the system is in alarm mode, a map indicating the area de�ned
as the road is needed. This is simply a binary image, where a white pixel represents a
road pixel.

The tracking system performs tracking using the parameters listed in the con�guration �le.
From the con�guration �le it is possible to enable and disable the output from the system
and also to specify the output directory. The tracking system is able to output the following:

<�lename>_foreground.avi The binary foreground mask for the input video �le named
<�lename>.

<�lename>_result.avi The tracking result is superimposed on top of the raw input video
�le named <�lename>.

virtualview.avi This video �le contains the tracking result visualized on top of the raw
input video, the corresponding foreground masks and the tracking result shown on the
virtual view image. It is all stored in a single video �le, which makes it easy to validate
the tracking result.

view<X>_track<Y>.txt A text �le is created for each track in each view. <X> indicate
the view number and <Y> indicate the tracking number. For each frame the object
has been tracked, the following information is saved:

• Object classi�cation
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Figure F.2: Snapshot of the tracking system showing the foreground segmentation,
virtual view and tracking result superimposed on the input video.

• Ground point location
• Centroid location
• Bounding box location
• Area
• Boolean value indicating if the object is occluded. If this is the case, the depth

estimation is also stored
• Whether or not the track is paired with a track in the other view. If this is the

case, the paired track id is also stored
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• View invariant point location
• View invariant size
• View invariant speed

When the program is not running in alarm mode only the foreground segmentation and input
video are shown for each view. Depending on the settings in the con�guration �le, the input
video might also show the tracking result. If visualization of the virtual view is enabled
this is also shown. Figure F.2 illustrates the system when showing the virtual view and
superimposing the tracking result on the input video.
If the program is running in alarm mode, there is only a single window showing the virtual
view and two input views. A snapshot of this is shown in Figure F.3.

Figure F.3: Snapshot of the tracking system when running in alarm mode.

The program can be paused by pressing the S-key. It is possible to exit the program by
pressing the Esc-key.
The source code for the tracking system is located on the DVD (} /application/humanVehi-
cleTracking/ ). An executable version is also located on the DVD (} /application/humanVehi-
cleTracking/release/ ). In the same library some shortcuts are also stored. Each shortcut calls
the executable �le for the tracking system with a di�erent con�guration �le. A walkthrough
for running the program can be found on the DVD (} /application/walkthrough.doc).





Appendix G
Publication

This appendix contains the publication �Automatic Annotation of Humans
in Surveillance Video�, which was submitted and accepted for oral presenta-
tion at The First International Workshop on Video Processing and Recogni-
tion (VideoRec'07). The publication was made during the �rst two months
of the stay at Computer Vision and Robotics Research laboratory at Uni-
versity of California, San Diego.
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Automatic Annotation of Humans in Surveillance Video

D.M. Hansen, B.K. Mortensen, P.T. Duizer, J.R. Andersen and T.B. Moeslund
Laboratory of Computer Vision and Media Technology

Aalborg University, Denmark

Abstract

In this paper we present a system for automatic anno-
tation of humans passing a surveillance camera. Each hu-
man has 4 associated annotations: the primary color of the
clothing, the height, and focus of attention. The annota-
tion occurs after robust background subtraction based on a
Codebook representation. The primary colors of the cloth-
ing are estimated by grouping similar pixels according to a
body model. The height is estimated based on a 3D map-
ping using the head and feet. Lastly, the focus of attention
is defined as the overall direction of the head, which is esti-
mated using changes in intensity at four different positions.
Results show successful detection and hence successful an-
notation for most test sequences.

1. Introduction

Due to the many potential applications ”Automatic
Surveillance System” research has received much atten-
tion recently [9]. It is generally believed that a successful
surveillance system will contain a figure-ground segmenta-
tion to detect humans in the images, tracking to maintain
temporal coherence, and finally a recognition part to recog-
nize identity, actions etc. [9]. So far no system has been able
to successfully do any of the three parts in a robust man-
ner and hence no commercial systems are available. While
waiting for robust subsystems to build upon, different suc-
cessful sub-applications have been built.

In our work we follow this trend and aim at an automatic
annotation system for surveillance video. The long term
goal is a network of connected cameras, each annotating
every person passing by in terms of appearance, size, and
behavior/action. In this particular paper we use one camera
and limit the annotation to a few informative measures.

Different types of appearance measures exist such as
color and style of hair, shirt, pants, shoes, beard, and
glasses. In this work we focus on the most fundamental,
namely the primary color of the hair, upper body clothing
and lower body clothing. Regarding the size of a person

many measures exist, but we focus on the primary one,
namely the height of the person. Annotating the behav-
ior/action of a person is a complex task. In this work we
limit behavior to the attention of a person defined as the di-
rection of the head. We are not aiming at actual head pose
but rather the general direction of attention.

The paper is structured as follows. In Section 2 it is de-
scribed how humans are segmented and tracked. In Sections
3, 4, and 5 we describe the actual annotation of the three
measures: appearance, size, and behavior, respectively. In
Section 6 results are presented and finally the paper is con-
cluded in Section 7.

2. Segmentation of Humans

Before any annotation can commence, each human has
to be segmented from the rest of the image, i.e., figure-
ground segmentation. As this is the first step in many sys-
tems analyzing humans several approaches exist based on
e.g., background subtraction [4, 15], motion [14, 16], ap-
pearance [5, 13], and shape [7, 17]. For an overview see
[9].

We apply a robust version of background subtraction,
known as the Codebook method [6], because it has been
shown to operate for ten hours without losing significant
selectivity [3]. The method contains three steps: modeling
the background, pixel classification and model updating.

Each pixel is modeled as a group of codewords which
correspond to the codebook for this particular pixel. Each
codeword is a cylinder in RGB-space. In each new frame
each pixel is compared to its codebook. If the current pixel
value belongs to one of the codewords it is classified as
background, otherwise foreground.

The codebooks are built during training and updated at
run-time. The training phase is similar to the pixel clas-
sification mentioned above except that a foreground pixel
results in the construction of a new codeword and a back-
ground pixel is used to modify the codeword it belongs to
using a standard weighting scheme. The codebooks gener-
ated in this way during training will typically fall into three
categories:
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Static codebook For example a pixel representing a road
with no shadows or occlusions. Typically only one
codeword is used.

Quasi-static codebook For example a pixel containing the
sky, but sometimes occluded by vegetation due to wind
gusts. During training typical two codewords will be
constructed for this codebook, one for the sky and one
for the vegetation.

Noisy codebook One of the above combined with ”noise”
in the form of a pedestrian, car etc. passing by the
pixel or noise due to incorrect segmentation. The re-
sult will be an often high number of codewords for this
codebook.

To handle the noisy codebooks a temporal filter is
applied. It is based on the Max Negative Run-Length
(MNRL), which is the longest time interval in which a code-
word has not been activated. The filter effectively removes
codewords with little support during the training phase,
such as passing pedestrians.

During run-time the activated codewords are updated in
two ways. Firstly, as described above, using a standard
weighting scheme to ensure updates with respect to slow
changes in the scene, e.g., the position of the sun. The sec-
ond type of update handles fast changes in the scene. Imag-
ine a car enters the scene and is parked inside the scene.
Obviously the car will be segmented as a foreground ob-
ject. If the car stays in the scene it is considered background
and new foreground objects passing the car can be correctly
classified as foreground objects. This is done by defining a
new codeword whenever a pixel is classified as foreground.
If this new codeword has support in terms of a small MNRL
then it is defined as a codeword and added to the codebook
for this pixel. These types of codewords are denoted non-
permanent codewords and can be removed again if they lack
support for some time. A codeword learned during training
is denoted a permanent codeword and can not be removed.
Using the two updates provides a robust figure-ground seg-
mentation for further processing.

2.1. Tracking

After having performed figure-ground segmentation we
need to filter the output first spatially to ensure that each
blob corresponds to one and only one human and second
temporally to obtain a track of each human over time.

We assume walking or standing humans and can there-
fore define an interval of acceptance for the ratio between
the height and width of the bounding box. Furthermore, af-
ter improving the output using standard filter methods we

introduce size criteria1, see Figure 1, together with a prox-
imity criterion which merge correct sized blobs located on
top of each other [1].

In
pu

t
O

bj
ec

t C
la

ss
ifi

ca
tio

n

Wrong aspect ratio Area too small

Area too big

Figure 1. An illustration of the size criteria.

Each time a new track is initiated an ID is assigned.
The tracking of IDs is done using temporal filtering with
a zero’th order predictor and an Euclidean distance mea-
sure. Groups and partial occlusion will result in blobs that
are too large or small respectively, which are ignored. This
can result in small tracks or tracks not assigned an ID in ev-
ery frame. To decide whether we want to keep a track or not
for further processing we use the same principle as used for
the MNRL [1].

3. Appearance: Color

Representing a human by colors has been used in track-
ing for some time. The standard approach is to divide the
silhouette into a number of regions (usually three) and rep-
resent each region by either a Mixture of Gaussian or a his-
togram, see e.g., [10, 13] and [9] for an overview. These
representations tend to describe the average color in a re-
gion. Furthermore, they often use fixed region borders re-
sulting in a long shirt contributing to the colors of both the
upper and the lower body parts.

Neither the averaging nor the fixed region borders con-
stitute a problem in tracking. However, for annotation a
different method is required, which allows for a detection
of the primary color for both the upper and the lower body
parts, respectively. Before explaining how this is done we
first describe the chosen color space representation.

1These criteria are defined with respect to the camera’s position (cal-
ibration), the layout of the scene, and the position of the human in the
scene.
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3.1. Color Space Representation

We use HSV colors since these are more practical for
human interpretation2 in an annotation system and at the
same time decouples color and intensity allowing for less
lighting dependent annotations.

Even though humans can distinguish between thousands
of color shades, they are normally only able to remember
11 basic colors: red, green, yellow, orange, brown, pink,
purple, white, gray, and black [2].

In order to convert from HSV color coordinates to these
11 color terms, the HSV-color space has to be subdivided.
The hue-saturation color space is divided as shown in Figure
2 [1].
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Figure 2. The hue-saturation space is divided
into eight fields [1].

The hue-saturation space is divided into eight different
fields. When the saturation is low, which is the white field
in the figure, it is hard to separate different colors. Instead
the color term is either black, gray or white, depending on
the brightness of the color. The seven other fields represent
the rest of the color terms. The brown color is missing in the
figure, because it shares the hue and saturation with other
fields. When the brightness is low, both orange, yellow and
pink look brown. This is used to define the brown color.

3.2. Assigning Pixels to Body Parts

Taking the silhouette as input we are interested in first
finding the color of the pixels belonging to the different
body parts, see Figure 3(b), and then constructing a textual
representation.

The input color image is segmented using the k-means
clustering algorithm. The number of samples, n, is equiva-
lent to the number of pixels in the image. The feature space
is 3 dimensional, corresponding to the dimension of the
color space. Experiments in this work show that better seg-
mentation is achieved using all color components instead of
only hue and saturation. The samples are divided into Nc

clusters (20 in this work) using the k-means algorithm with
an euclidian distance measure.

2For enquires into a database of annotations.

To compensate for oversegmentation, similar clusters are
merged together. Two clusters are merged, if the euclidian
distance in the hue-saturation space between their centers is
below a predefined threshold.

A cluster can consist of a high number of blobs, which
are not necessarily connected. We therefore apply a con-
nected component analysis based on contours [1] to find
all the individual blobs. The resulting blobs can be seen
in Figure 3(c). For all blobs, the size and the mean color
are found. Too small blobs are ignored as are blobs hav-
ing a color similar to skin. We use a look-up-table in hue-
saturation space to detect skin pixels [1].

The different blobs are assigned to one of the body parts
based on the assumption that people are upright. We use
the vertical position of their centers to assign blobs [12]:
Head ∈ [0, 16%]. Upper body ∈ [16, 45%]. Lower body ∈
[45, 100%]. 0% = top of bounding box and 100% = bottom
of bounding box. See Figure 3.

(a) (b) (c) (d) (e) (f) (g)

Figure 3. Assignment of blobs to body parts.
(a) Input. (b) An ideal color segmentation of a
person. (c) Blobs. (d) Head. (e) Upper body.
(f) Lower body. (g) Merged blobs. Black rep-
resent skin, red the hair, green the shirt and
blue the pants.

The body parts still consist of a large number of blobs.
To lower this number blobs are merged in the same man-
ner as for clusters. Only this time, the color threshold is
set higher to merge more blobs. Different thresholds can be
used in the three body parts. Normally, people wear uniform
colored pants, but might wear a multicolored shirt. There-
fore, the threshold should be lower for the upper body than
the lower body.

The merged blobs are illustrated in Figure 3(g). In the
figure the black color represent skin blobs, which have not
been merged. The two red shades are hair, the three green
shades are the shirt and the three blue shades are the pants.
The largest of the merged blobs is used as output in the tex-
tual description, since only the most dominant color is de-
sired. In order to obtain stable color estimates we filter the
output for each track by selecting the most often occurring
color along a track.
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4. Size: Height

To estimate the height we assume walking or standing
persons. A prerequisite of the method is a calibration be-
tween the camera and floor, yielding the projection matrix
shown in Equation 1. A is a matrix containing the intrin-
sic parameters, R and �t are the extrinsic parameters. The
extrinsic parameters are chosen so the X and Y world axis
are in the ground plane, which is assumed to be a two di-
mensional plane.

H = A
[
R�t

]
=




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34


 (1)

Two image points must be located to calculate the height.
One point located on the ground between the person’s feet
called the ground point and a point at the top of the head.
The ground point is estimated using convex hull points. In
order to find the ground point, two foot points are located as
the two convex hull points closest to the two lower corners
of the bounding box, see Figure 4. The ground point is
the intersection between a vertical line through the median
point of the body and a line defined by the two foot points,
see Figure 4. The head point is chosen as the topmost pixel
in the body silhouette.

Figure 4. The principle used to find the top of
the head and ground point.

After locating the ground point and head point, the next
step is to map these points into world coordinates. The
ground point is assumed to be in the ground plane, hence
Z = 0 in world coordinates. As described in [8], H can be
altered to represent a mapping from the image plane to the
ground plane (where Z = 0) of the world coordinate sys-
tem. This makes it possible to compute the person’s ground
plane position in world coordinates. Knowing the ground
plane position, it is now possible to extend a line in the di-
rection of the ground plane normal until it intersects a plane
extended by the head point. This is illustrated in Figure 5.
The height Z is calculated by Equation 2, where u and v

are the head point coordinates and X and Y are the world
coordinates for the ground point.

Figure 5. An illustration of the height esti-
mate using the ground point and head point.
The height is given by the Z world coordinate
of the intersection point between the normal
and the plane extended by the head point.

Z =
(h21 − vh31)X + (h22 − vh32)Y + h24 − vh34

vh33 − h23
(2)

The height estimate is stored with the tracking ID for
each frame the person is tracked. When a track is ended,
e.g., by the person leaving the scene, we have several es-
timates of the person’s height. However, only one height
estimate is desired and this is chosen as the median value of
all the height estimates. This makes the estimate robust to-
wards outliers, which may be caused by poor segmentation
in a few frames of the total tracking period. Furthermore,
the method is based only on a couple of matrix operations
and a convex hull method making it computationally inex-
pensive.

5. Behavior: Head Direction

The orientation of the person’s head is used as an esti-
mate for the person’s attention. We first extract the head in
an image and then classify the head direction into one of
five different categories.

5.1. Head Extraction

Before the orientation of the head can be determined,
template matching is first applied to extract the head.

The head is extracted from the silhouette of the person.
The binary image allows for fast matching with exclusive-or
operations. A number of preprocessing steps trim the size
of the silhouette to further reduce processing time.
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The template consists of a head and torso whose size is
changed dynamically for scale invariance. The head and
torso is dimensioned based on typical human measures, and
the size is determined by an estimate of the person’s shoul-
der width. The shoulder width is estimated as 90 percent
of the minimum distance from the median of the silhouette
to either side of the person’s bounding box. This approach
provide a reliable measure invariant to typical segmentation
errors. Figure 6 shows the steps in the head extraction pro-
cess.

Silhouette 
and median

Template

Preprocessed 
image

Initial 
estimate

Best 
Match

y

x

Figure 6. The steps in the head extraction
process.

5.2. Head Direction Classification

The head is classified into one of five classes, corre-
sponding to an orientation of Right 90◦ , Right 45◦ , 0◦ ,
Left 45◦ and Left 90◦ , where 0◦ is a person facing the cam-
era. For determining the head orientation at low resolution,
a view-based method inspired by [11] is used. The method
in based on calculating moments of pixel intensity distribu-
tion in subimages of the extracted head. The moment fea-
tures provide invariance to scaling and robustness toward
imperfect segmentation and head extraction. In [11], the
head is divided into twelve subimage in a 3 × 4 grid, as de-
picted in Figure 7(a), and for each subimage a feature value
W is calculated using Equation 3.

W =
mean(subimage) − mean(image)

std(image)
(3)

Only those pixels that are within the silhouette of the
person are part of the calculations. Furthermore, any high-
lights in the head region are removed beforehand, to reduce
the influence of face items like eyeglasses or shiny skin. In-
spection of these twelve features in the training data showed
some features provide very little or no information. The cor-
ners had a poorly separated mean value and a high variance.
Furthermore, many of the features are highly correlated. To
improve this, 40 subimages in a 5 × 8 grid were used to

(a) (b)

Figure 7. (a) head region divided into twelve
subimages. (b) four selected subimages of a
5 × 8 grid.

locate more specific areas in the head, and the four fea-
tures depicted in Figure 7(b) were selected. The numbers
in the subimages corresponds to the numbering of the fea-
tures, and the plot in Figure 8 depicts their mean value and
variance. As seen in the figure, these features are able to
separate the classes in the training data, but does also raise
the requirements for the training data to be representative.
The different grid division gives areas in the head where
e.g. the area is skin-only when the head is oriented 0◦ and
hair-only when the head is oriented ±90◦ .
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Figure 8. The mean and variance of the four
features, calculated from the four selected
subimages.

The four-dimensional feature vector is classified using
k-nearest-neighbor using Euclidean distance. A temporal
filter is applied to each track selecting the most occurring
head orientation class within the last X frames as the out-
put. Experiments have shown that using X = 15 frames gives
the best output and seems to be a reasonable size to filter
out sudden head movement. 15 frames correspond to one
second meaning that attention is defined as a constant head
direction for one second.
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6. Results

In this section we present test results for the previous sec-
tions. All results are recorded with a standard web-camera
with a resolution of 320x240 pixels and with a frame rate of
15 Hz.

6.1 Segmentation of Humans

111 frames are selected randomly from five different
video sequences. 91 frames contained one of more humans.
The pixels belonging to a human are found manually to ob-
tain ground truth. On average the false acceptance rate3 is
0.06% and the false rejection rate4 is 5.95%. The errors
originate especially from foreground camouflage and shad-
ows. When the appearance of a person’s clothing is similar
to the background then a ”hole” can appear in the silhouette
leading to false rejections. This, however, seldom affects
the rest of the system. Shadows can affect both the estima-
tion of the colors as well as the height estimation. In most
cases, however, the temporal filtering solves the problems5.

The tracking works very well because occlusions are ig-
nored. If the system is to be used to annotate individuals
during occlusions, then better segmentation and tracking is
required. Possible solutions can be found in [9].

6.2 Appearance: Color

The color descriptor is tested in two test cases. The first
case tests the correctness of the annotated color term and the
second case tests the variation of the extracted color values
for a person walking through the scene.

The purpose of the first test case is to analyze the ability
to annotate different colors. Furthermore, the transforma-
tion from HSV to the 11 color terms is tested. 33 input
images are manually segmented, so only the person and a
white background is present. Four people agreed on the
color terms yielding ground truth. See examples in Figure
9. The first row is the ground truth for the upper body, while
the second row is the annotated color terms.

All shirts are annotated correctly, except for the
turquoise-green t-shirt (#6), which is annotated as blue. The
reason for wrong assignment is that the HSV value lies in
between the green and blue color term, where the border is
sharply defined, despite it being rather fuzzy in reality. This
problem also exist when humans determine a color and a

3The false acceptance rate is defined as the number of background pix-
els falsely accepted as foreground pixels, divided by the total number of
manually annotated background pixels.

4The false rejection rate is defined as the number of foreground pixels
falsely rejected, divided by the total number of manually annotated fore-
ground pixels.

5For more results on the figure-ground segmentation please refer to [3].

suggestion is therefore to represent borderline colors by two
different colors.

This test also highlights difficulties when a person is
wearing shirt and pants of the same color. For test subject 2,
it is difficult to find the border between the upper and lower
body. The clusters often separates the upper and lower body,
but after the merging of clusters, the upper and lower body
can be fused. The annotated color terms are however often
correct, because the largest color blobs of both the upper
and lower body are still correct - blue in this particular case.

Lastly it was found that problems occur when people
are wearing skin-colored clothes. In these situations, the
produced color term might only represent the second most
dominant color. This is the case with the pants of test sub-
ject 10. The pants are classified as skin making the white
shoes the largest part of the lower body. The pants are
therefore labeled as white. To handle such situations more
advanced analysis of the blobs is required.

The second test case tests the color descriptor when con-
nected to the tracking module. Instead of using manu-
ally segmented images, the output produced by the tracking
module is used directly. The same test recordings as in the
first test case are used.

In general, for all test subjects the same issues are ob-
served. Outliers occur mainly because color descriptors
are made even though the person is not completely in the
scene. Also, misclassifications from the figure-ground seg-
menting caused by strong shadows lead to false color terms.
However, these problems are eliminated (except for the hair
where the resolution is too low to produce trustworthy re-
sults) by temporal filtering and the correct color terms are
found in all cases except a few where blue and green are
mixed up as illustrated in Figure 9.

6.3 Size: Height

We recorded a video with four people moving in differ-
ent directions and at different speeds within the scene to test
the height estimate. The results are shown in Table 1. A to-
tal of 17 tracks or height estimates are performed and the
number of frames available for the height estimation is be-
tween 33 and 90 (2-6 seconds). The table shows the statis-
tics of each person. Despite the segmentation issues and the
merging of two tracks, the poorest height estimate is only
3.4 cm from the actual height.

6.4 Behavior: Head Direction

Two types of tests are conducted, a quantitative and a
qualitative test.

In the quantitative test eight test subjects are instructed
to put their heads in one of the five head positions for a
certain period of time by standing still and looking at certain
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blue blue brown blue red green yellow yellowwhite gray brown

blue blue brown blue red blue yellow yellowwhite gray brown

True:

Annotated:

#1 #2 #11#10#9#8#7#6#5#4#3

Figure 9. 9 test images. The first row of color terms is ground truth. The second row is the output
from the system.

Person 1 Person 2 Person 3 Person 4
# tracks 4 7 2 4
Height 182.0 cm 192.0 cm 170.0 cm 186.0 cm
Mean 181.4 cm 191.5 cm 171.9 cm 186.0 cm
Std.dev. 1.9 cm 1.9 cm 2.2 cm 0.5 cm
Min 179.7 cm 189.4 cm 170.3 cm 185.7 cm
Max 184.0 cm 193.7 cm 173.4 cm 186.7 cm

Table 1. The result of estimating the height
for four people. # tracks lists the number
of tracks for each person in the recording.
Height is the actual height of the person.

markers mounted in the room. Two samples per class per
subject is used to train a classifier which is tested on more
than 2000 frames.

The results are shown in Table 2. The table shows the
percentage of correctly classified frames for a specific class
and test subject along with the total correct classifications.
The system yields a classification rate of 80.1%. Of the
19.9% misclassifications all were classified within the ad-
jacent class(es), which is ±45◦ of the correct class. If the
five classes are merged into three classes (Right, Front and
Left) the result is a 98.5% correct classification rate. The
results vary between the test subjects. The poorest clas-
sification is for test subject 1 who has hair that sticks up.
The hair moves the subimages to an undesired area causing
more misclassifications. Test subject 5 and 6 are the same
person without glasses and with glasses, respectively. With
glasses it is harder to classify Left 90◦ correctly and it is
misclassified as Left 45◦ . In the qualitative test 40 video
sequences (7000+ frames) are used. In each sequence a test
person walks towards the camera and changes his/her posi-
tion in a supervised manner. When the subject is within 9

Sub. R90◦ R45◦ 0◦ L45◦ L90◦

1 100% 4.9% 75.8% 0% 100%
2 48.2% 100% 100% 90.1% 100%
3 100% 100% 100% 0% 100%
4 95.8% 45.6% 86.3% 75.3% 100%
5 20.8% 88.3% 100% 100% 100%
6 0% 97.6% 100% 100% 0%
7 100% 86.3% 100% 100% 100%
8 100% 88.1% 100% 100% 100%

Total correct classifications: 80.1%
Classifications in adjacent class(es): 19.9%
Classifications in other classes: 0.0%

Table 2. The result of estimating head direc-
tion for the test subjects.

meters enough head pixels (> 10x15) are available for clas-
sification. The results depend on the distance to the camera.
When the subjects are more than 4.5 meters away 49.0% is
correctly classified. 75.4% was correctly classified for sub-
jects closer than 4.5 meters. The total correct classification
for the entire walking distance is 62.2%. By merging the
five classes into three classes (Right, Front and Left) the far
distance, close distance and total correct classification be-
comes 72.5%, 92.4% and 82.5%, respectively.

In real-life applications a frame-by-frame head direction
is not always desirable and annotation of general tendencies
in the form of a textual output rather than frame-by-frame
output is more feasible, e.g., registration of how many cus-
tomers are looking at a certain display window. In such
applications, a coarse time location of a change in head po-
sition is sufficient. The filtered output from the head direc-
tion classification have stable periods where the same class
is outputted for several frames. If we define a stable period
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Figure 10. Head direction. Blue: Estimate. Green: Ground truth. Yellow: Stable period.

to be at least one second we can create a textual output. For
the left graph in Figure 10, the textual output is {Frame 119-
175 looking Right 90◦ , Frame 191-270 looking Left 45◦ }
using the stable periods and is depicted graphically in the
figure by yellow lines6. Besides the inaccurate location of
the transition in head direction, the textual output is correct.

A problematic issue is shown in Figure 10 (right). In
this case, an extra head direction is listed in the textual out-
put. However, it is typically a head direction within 45◦ of
the correct direction and occurs when the subject is located
farthest away from the camera or during head direction tran-
sition. Hence in the context of for example determining if
a customer is looking at the stores on his left or right, the
proposed head direction provides a reliable result.

7. Conclusions

The paper has presented annotation of persons passing a
surveillance camera in terms of primary color of upper and
lower body part, the height of the person, and head direction
to estimate attention. The annotations are incorporated into
a system based on a robust segmentation of individuals.

One limitation of the system is its lack of occlusion han-
dling. For dense areas this will reduce the number of per-
sons that are actual annotated and a more advanced segmen-
tation is required to handle such situation, see [9] for exam-
ples. In future work an active camera will be controlled
by the segmentation to zoom in on the face for obtaining a
quality picture to store along with the other annotations or
for further processing, e.g., ID or facial expression recogni-
tion.
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vances in Vision-Based Human Motion Capture and Analy-
sis. Journal of Computer Vision and Image Understanding,
104(2-3), 2006.

[10] K. Okuma, A. Taleghani, N. Freitas, J. Little, and D. G.
Lowe. A Boosted Particle Filter: Multitarget Detection and
Tracking. In European Conference on Computer Vision,
Prague, Czech Republic, May 11-14 2004.

[11] S. Park and J. Aggarwal. Head Segmentation and Head Ori-
entation in 3D Space for Pose Estimation of Multiple Peo-
ple. In IEEE proc. Southwest Symposium on Image Analysis
and Interpretation (SSIAI 2000), Austin, TX, USA, 2000.

[12] S. Park and J. Aggarwal. Simultaneous tracking of multi-
ple body parts of interacting persons. Computer Vision and
Image Understanding, 102(1), 2006.

[13] D. Roth, P. Doubek, and L. Gool. Bayesian Pixel Classifica-
tion for Human Tracking. In IEEE Workshop on Motion and
Video Computing (MOTION’05), Breckenridge, Colorado,
Jan 2005.

[14] H. Sidenbladh. Detecting Human Motion with Support
Vector Machines. In International Conference on Pattern
Recognition, Cambridge, UK, Aug 2004.

[15] C. Stauffer and W. Grimson. Adaptive Background Mixture
Models for Real-Time Tracking. In Computer Vision and
Pattern Recognition, Santa Barbara, CA, USA, June 1998.

[16] P. Viola, M. Jones, and D. Snow. Detecting Pedestrians Us-
ing Patterns of Motion and Appearance. International Jour-
nal of Computer Vision, 63(2), 2005.

[17] B. Wu and R. Nevatia. Detection of Multiple, Partially Oc-
cluded Humans in a Single Image by Bayesian Combination
of Edgelet Part Detection. In International Conference on
Computer Vision, Beijing, China, Oct 15-21 2005.

Fourth Canadian Conference on Computer and Robot Vision(CRV'07)
0-7695-2786-8/07 $20.00  © 2007



Bibliography

[Aalborg University, 2007] Aalborg University (2007). Pay As You Speed. http://www.
sparpaafarten.dk/en/index.php.

[Agarwal et al., 2005] Agarwal, A., Jawahar, C., and Narayanan, P. (2005). A Survey of
Planar Homography Estimation Techniques. Technical report.

[Andersen et al., 2006] Andersen, J., Duizer, P., Hansen, D., and Mortensen, B. (2006). Auto-
matic Annotation of Humans in Surveillance Video Recordings. Technical report, Computer
Vision and Media Technology, Aalborg University.

[Andersen and Corlin, 2005] Andersen, P. F. and Corlin, R. (2005). Tracking of Interacting
People and Their Body Parts for Outdoor Surveillance. Master's thesis, Computer Vision
and Media Technology, Aalborg University.

[Barreto, 2001] Barreto, H. (2001). An Introduction to Least Median of Squares.

[Blauensteiner et al., 2006] Blauensteiner, P., Wildenauer, H., Hanbury, A., and Kampel, M.
(2006). Motion and Shadow Detection with an Improved Colour Model. In Proc. of the
IEEE Int. Conf. on Signal and Image Processing (ICSIP06), Hubli, India.

[Calderara et al., 2005] Calderara, S., Vezzani, R., Prati, A., and Cucchiara, R. (2005). Entry
Edge of Field of View for Multi-camera Tracking in Distributed Video Surveillance. IEEE
Conference on Advanced Video and Signal Based Surveillance. (AVSS2005), pages 93� 98.

[Chalidabhongse et al., 2003] Chalidabhongse, T. H., Kim, K., Harwood, D., and Davis, L.
(2003). A Perturbation Method for Evaluating Background Subtraction Algorithms. Joint
IEEE International Workshop on Visual Surveillance and Performance Evaluation of Track-
ing and Surveillance.

[Chang and Gong, 2001] Chang, T.-H. and Gong, S. (2001). Tracking Multiple People with
a Multi-Camera System. Proceedings of the IEEE Workshop on Multi-Object Tracking.

[Christensen and Nikolajsen, 2005] Christensen, M. F. and Nikolajsen, J. (2005). Tracking
of People in Airports. Technical report, Computer Vision and Media Technology, Aalborg
University.

[Collins et al., 2000] Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D.,
Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., and Wixson, L. (2000). A
System for Video Surveillance and Monitoring.

[Computational Vision Group, 2007] Computational Vision Group (2007). PETS: Perfor-
mance Evaluation of Tracking and Surveillance. http://www.cvg.rdg.ac.uk/slides/
pets.html.

[Criminisi et al., 1999] Criminisi, A., Reid, I., and Zisserman, A. (1999). A Plane Measuring
Device. Image and Vision Computing 17, pages 625�634.

173

http://www.sparpaafarten.dk/en/index.php�
http://www.sparpaafarten.dk/en/index.php�
http://www.cvg.rdg.ac.uk/slides/pets.html�
http://www.cvg.rdg.ac.uk/slides/pets.html�


174 BIBLIOGRAPHY

[Cucchiara et al., 2003] Cucchiara, R., Grana, C., Piccardi, M., and Prati, A. (2003). De-
tecting Moving Objects, Ghosts and Shadows in Video Streams. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(10):1337�1342.

[Cucchiara et al., 2001] Cucchiara, R., Grana, C., Piccardi, M., Prati, A., and Sirotti, S.
(2001). Improving Shadow Suppression in Moving Object Detection with HSV Color In-
formation. Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE.

[Cucchiara et al., 2004] Cucchiara, R., Grana, C., and Tardini, G. (2004). Track-based and
Object-based Occlusion for People Tracking Re�nement in Indoor Surveillance. ACM 2nd
International Workshop on Video Surveillance and Sensor Networks, pages 388�393.

[Cutler and Davis, 2000] Cutler, R. and Davis, L. S. (2000). Robust Real-Time Periodic
Motion Detection, Analysis, and Applications. IEEE Transactions on Pattern Analysis
And Machine Intelligence, 22(8):781�796.

[Dockstader and Tekalp, 2001] Dockstader, S. and Tekalp, A. (2001). Multiple Camera Track-
ing of Interacting and Occluded Human Motion. Proceedings of the IEEE, 89(10):1441�1455.

[Doshi and Trivedi, 2006] Doshi, A. and Trivedi, M. (2006). Hybrid Cone-Cylinder Codebook
Model for Foreground Detection with Shadow and Highlight Suppression. Proceedings of
the IEEE International Conference on Video and Signal Based Surveillance (AVSS'06).

[Elgammal et al., 2000] Elgammal, A., Harwood, D., and Davis, L. (2000). Non-parametric
Model for Background Subtraction. 6th European Conference on Computer Vision, Dublin,
Ireland.

[Endsley, 1988] Endsley, M. R. (1988). Situation awareness global assessment technique
(SAGAT). Proceedings of the IEEE 1988 National Aerospace and Electronics Conference:
NAECON 1988, pages 789�795.

[Færdselssikkerhedskommisionen, 2000] Færdselssikkerhedskommisionen (2000). Hver ulykke
er en for meget - Nye mål 2001-2012. http://www.trm.dk/graphics/synkron-library/
trafikministeriet/publikationer/pdf/039.pdf.

[Færdselssikkerhedskommisionen, 2007] Færdselssikkerhedskommisionen (2007). Hver ulykke
er en for meget - Nye mål 2001-2012 - Forslag til revision af strategier og indsatser. http:
//www.faerdselssikkerhedskommissionen.dk/wimpshow.asp?type=image&id=77277.

[Hansen et al., 2007] Hansen, D. M., Mortensen, B. K., Duizer, P. T., Andersen, J. R., and
Moeslund, T. B. (2007). Automatic Annotation of Humans in Surveillance Video. Proceed-
ings of the Fourth Canadian Conference on Computer and Robot Vision, 00:473�480.

[Haritaoglu et al., 2000] Haritaoglu, I., Harwood, D., and Davis, L. S. (2000). W4: Real-Time
Surveillance of People and Their Activities. IEEE Transactions on Pattern Analysis And
Machine Intelligence, 22(8):809�830.

[Hartley and Zisserman, 2004] Hartley, R. and Zisserman, A. (2004). Cambridge University
Press, second edition.

[HERMES, 2007] HERMES (2007). Human Expressive Representations of Motion and their
Evaluation in Sequences. http://www.hermes-project.eu/.

http://www.trm.dk/graphics/synkron-library/trafikministeriet/publikationer/pdf/039.pdf�
http://www.trm.dk/graphics/synkron-library/trafikministeriet/publikationer/pdf/039.pdf�
http://www.faerdselssikkerhedskommissionen.dk/wimpshow.asp?type=image&id=77277�
http://www.faerdselssikkerhedskommissionen.dk/wimpshow.asp?type=image&id=77277�
http://www.hermes-project.eu/�


BIBLIOGRAPHY 175

[Hillerød Kommune, 2004] Hillerød Kommune (2004). Virkemiddelkatalog (Dan-
ish). http://www.hillerod.dk/upload/teknik/planlaegning/byplan/pdf/trafik/
virkemiddelkatalog_001.pdf.

[Hu et al., 2004a] Hu, M., Hu, W., and Tan, T. (2004a). Tracking People through Occlusions.
Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004),
2:724�727.

[Hu et al., 2006] Hu, W., Hu, M., Zhou, X., Tan, T., Lou, J., and Maybank, S. (2006).
Principal Axis-Based Correspondence between Multiple Cameras for People Tracking. IEEE
Transactions On Pattern Analysis And Machine Intelligence, 28(4):663�671.

[Hu et al., 2004b] Hu, W., Tan, T., Wang, L., and Maybank, S. (2004b). A Survey on Visual
Surveillance of Object Motion and Behaviors. IEEE Transactions On Systems, Man, and
Cybernetics.

[Jain and Jawahar, 2006] Jain, P. K. and Jawahar, C. V. (2006). Homography Estimation
from Planar Contours. 3D Data Processing, Visualization, and Transmission, Third Inter-
national Symposium on, pages 877�884.

[Javed and Shah, 2002] Javed, O. and Shah, M. (2002). Tracking And Object Classi�cation
For Automated Surveillance. Proceedings of the 7th European Conference on Computer
Vision-Part IV.

[Jeong and Jaynes, 2005] Jeong, K. and Jaynes, C. (2005). Moving Shadow Detection using
a Combined Geometric and Color Classi�cation. IEEE Workshop on Motion and Video
Computing. (WACV/MOTIONS2005), 2.

[Kang et al., 2003] Kang, J., Cohen, I., and Medioni, G. (2003). Continuous Tracking Within
and Across Camera Streams. Proceedings of the 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR2003).

[Kastrinaki et al., 2003] Kastrinaki, V., Zervakis, M., and Kalaitzakis, K. (2003). A Survey
of Video Processing Techniques for Tra�c Applications. Image Vision Computing.

[Keck et al., 2006] Keck, M. A., Davis, J. W., and Tyagi, A. (2006). Tracking Mean Shift
Clustered Point Clouds for 3D Surveillance. ACM Press, Proceedings of the 4th ACM
international workshop on Video surveillance and sensor networks.

[Khan and Shah, 2000] Khan, S. and Shah, M. (2000). Tracking People in Presence of Oc-
clusion. Asian Conference on Computer Vision, pages 263�266.

[Khan and Shah, 2003] Khan, S. and Shah, M. (2003). Consistent Labeling of Tracked Ob-
jects in Multiple Cameras with Overlapping Fields of View. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(10):1355� 1360.

[Khan and Shah, 2006] Khan, S. M. and Shah, M. (2006). A Multiview Approach to Tracking
People in Crowded Scenes using a Planar Homography Constraint. 9th European Conference
on Computer Vision.

[Kim et al., 2005] Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis, L. (2005). Real-
time foreground-background segmentation using codebook model. Real-Time Imaging.

http://www.hillerod.dk/upload/teknik/planlaegning/byplan/pdf/trafik/virkemiddelkatalog_001.pdf�
http://www.hillerod.dk/upload/teknik/planlaegning/byplan/pdf/trafik/virkemiddelkatalog_001.pdf�


176 BIBLIOGRAPHY

[Kim and Davis, 2006] Kim, K. and Davis, L. S. (2006). Multi-Camera Tracking and Seg-
mentation of Occluded People on Ground Plane using Search-Guided Particle Filtering.
European Conference on Computer Vision (ECCV).

[Koller et al., 1993] Koller, D., Daniilidis, K., and Nagel, H.-H. (1993). Model-Based Object
Tracking in Monocular Image Sequences. Kluwer Academic Publishers.

[Krumm et al., 2000] Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer,
S. (2000). Multi-Camera Multi-Person Tracking for EasyLiving. Third IEEE International
Workshop on Visual Surveillance.

[Lipton et al., 1998] Lipton, A., Fujiyoshi, H., and Patil, R. (1998). Moving Target Classi�ca-
tion and Tracking from Real-Time Video. Proceedings of the IEEE Workshop Applications
of Computer Vision, pages 129�136.

[Mansouri, 2002] Mansouri, A.-R. (2002). Region Tracking via Level Set PDEs without Mo-
tion Computation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):947�961.

[McKenna et al., 2000] McKenna, S. J., Jabri, S., Duric, Z., Rosenfeld, A., and Wechsler, H.
(2000). Tracking Groups of People. Computer Vision and Image Understanding, 80(1):42�
56.

[Mittal and Davis, 2003] Mittal, A. and Davis, L. S. (2003). M2Tracker: A Multi-View Ap-
proach to Segmenting and Tracking People in a Cluttered Scene. International Journal of
Computer Vision, 51(3):189�203.

[Moeslund et al., 2006] Moeslund, T., Hilton, A., and Kruger, V. (2006). A Survey of Ad-
vances in Vision-Based Human Motion Capture and Analysis. Journal of Computer Vision
and Image Understanding, 104(2-3).

[Oliver et al., 2000] Oliver, N. M., Rosario, B., and Pentland, A. P. (2000). A Bayesian
Computer Vision System for Modeling Human Interactions. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[Orwell et al., 1999] Orwell, J., Remagnino, P., and Jones, G. A. (1999). Multi-Camera
Colour Tracking. Proceedings of IEEE International Workshop on Visual Surveillance,
28(4).

[Park and Trivedi, 2006] Park, S. and Trivedi, M. M. (2006). Analysis and Query of Person-
Vehicle Interactions in Homography Domain. IEEE Conference on Video Surveillance and
Sensor Networks (VSSN2006).

[Prati et al., 2003] Prati, A., Mikic, I., Trivedi, M. M., and Cucchiara, R. (2003). Detecting
Moving Shadows: Algorithms and Evaluation. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

[Pérez et al., 2002] Pérez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-Based
Probabilistic Tracking. Proceedings of the 7th European Conference on Computer Vision-
Part I (ECCV 2002), pages 661�675.



BIBLIOGRAPHY 177

[Qu et al., 2007] Qu, W., Schonfeld, D., and Mohamed, M. (2007). Distributed Bayesian
Multiple-Target Tracking in Crowded Environments Using Multiple Collaborative Cameras.
EURASIP Journal on Advances in Signal Processing, 2007.

[Roth et al., 2005] Roth, D., Doubek, P., and Gool, L. V. (2005). Bayesian Pixel Classi�cation
for Human Tracking. Proceedings of the IEEE Workshop on Motion and Video Computing,
2:78�83.

[Rousseeuw and Leroy, 1987] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression
and outlier detection. Wiley Series In Probability And Mathematical Statistics, page 329.

[Sen-Ching et al., 2004] Sen-Ching, Cheung, S., and Kamath, G. (2004). Robust techniques
for background subtraction in urban tra�c video. Video Communications and Image Pro-
cessing, SPIE Electronic Imaging.

[Senior, 2002] Senior, A. (2002). Tracking People with Probabilistic Appearance Models.
Proceedings of the IEEE International Workshop Performance Evaluation of Tracking and
Surveillance, pages 48�55.

[Senior et al., 2006] Senior, A., Hampapur, A., Tian, Y.-L., Brown, L., Pankanti, S., and
Bolle, R. (2006). Appearance models for occlusion handling. Image and Vision Computing,
24(11):1233�1243.

[Stau�er and Grimson, 1999] Stau�er, C. and Grimson, W. (1999). Adaptive Background
Mixture Models for Real-Time Tracking. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

[Stau�er and Grimson, 2000] Stau�er, C. and Grimson, W. E. L. (2000). Learning Patterns of
Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis And Machine
Intelligence, 22(8):747�757.

[Trivedi et al., 2005] Trivedi, M. M., Gandhi, T., and McCall, J. (2005). Looking-In and
Looking-Out of a Vehicle: Selected Investigations in Computer Vision based Enhanced
Vehicle Safety. Proceedings on IEEE International Conference on Vehicular Electronics
and Safety.

[Valera and Velastin, 2005] Valera, M. and Velastin, S. (2005). Intelligent Distributed Surveil-
lance Systems: A Review. IEE Proceedings - Vision, Image, and Signal Processing,
152(2):192�204.

[Veenman et al., 2001] Veenman, C. J., Reinders, M. J., and Backer, E. (2001). Resolving Mo-
tion Correspondence for Densely Moving Points. IEEE Transactions On Pattern Analysis
And Machine Intelligence, 23(1):54�72.

[Wang and Suter, 2005] Wang, H. and Suter, D. (2005). A Re-Evaluation of Mixture-of-
Gaussian Background Modeling. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP2005).

[Welch and Bishop, 2001] Welch, G. and Bishop, G. (2001). An Introduction to the Kalman
Filter.



178 BIBLIOGRAPHY

[Wren et al., 1997] Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland, A. P. (1997).
P�nder: Real-Time Tracking of the Human Body. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

[Xu and Puig, 2005] Xu, L.-Q. and Puig, P. (2005). A Hybrid Blob- and Appearance-Based
Framework for Multi-Object Tracking through Complex Occlusions. Proceedings 2nd Joint
IEEE International Workshop on VS-PETS, pages 73�80.

[Yang and Levine, 1992] Yang, Y.-H. and Levine, M. D. (1992). The Background Primal
Sketch: An Approach for Tracking Moving Objects. Machine Vision and Applications,
5(1):17�34.

[Yilmaz et al., 2006] Yilmaz, A., Javed, O., and Shah, M. (2006). Object Tracking: A Survey.
ACM Computing Surveys, 38(4).

[Yue et al., 2004] Yue, Z., Zhou, S. K., and Chellappa, R. (2004). Robust Two-Camera Track-
ing Using Homography. IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP '04)., iii- 1-4:3.

[Zhao and Nevatia, 2004] Zhao, T. and Nevatia, R. (2004). Tracking Multiple Humans in
Complex Situations. IEEE Transactions On Pattern Analysis and Machine Intelligence,
26(9):1208�1221.

[Zhong and Sclaro�, 2003] Zhong, J. and Sclaro�, S. (2003). Segmenting Foreground Objects
from a Dynamic Textured Background via a Robust Kalman Filter. Proceedings of the
Ninth IEEE International Conference on Computer Vision (ICCV'03) - Volume 2.




